DOI QR코드

DOI QR Code

Bending analysis of softcore and hardcore functionally graded sandwich beams

  • Hadji, Lazreg (Department of Mechanical Engineering, University of Tiaret) ;
  • Safa, Abdelkader (Department of Civil Engineering, Ahmed Zabana University Centre)
  • Received : 2019.11.24
  • Accepted : 2020.02.04
  • Published : 2020.04.25

Abstract

A New hyperbolic shear deformation theory is developed for the bending analysis of softcore and hardcore functionally graded sandwich beams. This theory satisfies the equilibrium conditions at the top and bottom faces of the sandwich beam and does not require the shear correction factor. The governing equations are derived from the principle of virtual work. Sandwich beams have functionally graded skins and two types of homogenous core (softcore and hardcore). The material properties of functionally graded skins are graded through the thickness according to the power-law distribution. The Navier solution is used to obtain the closed form solutions for simply supported FGM sandwich beams. The accuracy and effectiveness of proposed theory are verified by comparison with previous research. A detailed numerical study is carried out to examine the influence of the deflections, stresses, and sandwich beam type on the bending responses of functionally graded sandwich beams.

Keywords

References

  1. Addou, F.Y., Meradjah, M., Bousahla, A.A., Benachour, A., Bourada, F., Tounsi, A. and Mahmoud, S.R. (2019), "Influences of porosity on dynamic response of FG plates resting on Winkler/Pasternak/Kerr foundation using quasi 3D HSDT", Comput. Concrete, 24(4), 347-367. https://doi.org/10.12989/cac.2019.24.4.347.
  2. Abualnour, M., Chikh, A., Hebali, H., Kaci, A., Tounsi, A., Bousahla, A.A. and Tounsi, A. (2019), "Thermomechanical analysis of antisymmetric laminated reinforced composite plates using a new four variable trigonometric refined plate theory", Comput. Concrete, 24(6). 489-498.
  3. Adda Bedia, W., Houari, M.S.A., Bessaim, A., Bousahla, A.A., Tounsi, A., Saeed, T. and Alhodaly, M.S. (2019), "A New Hyperbolic Two-Unknown Beam Model for Bending and Buckling Analysis of a Nonlocal Strain Gradient Nanobeams", J. Nano Res., 57, 175-191. https://doi.org/10.4028/www.scientific.net/JNanoR.57.175.
  4. Akbas, S.D. (2014), "Large post-buckling behavior of Timoshenko beams under axial compression loads", Struct. Eng. Mech. Int. J., 51(6), 955-971. https://doi.org/10.12989/sem.2014.51.6.955.
  5. Alimirzaei, S., Mohammadimehr, M. and Tounsi, A. (2019), "Nonlinear analysis of viscoelastic micro-composite beam with geometrical imperfection using FEM: MSGT electro-magneto-elastic bending, buckling and vibration solutions", Struct. Eng. Mech., 71(5), 485-502. https://doi.org/10.12989/sem.2019.71.5.485.
  6. Anderson, T.A. (2003), "A 3-D elasticity solution for a sandwich composite with functionally graded core subjected to transverse loading by a rigid sphere", Compos. Struct., 60(3), 265-274. https://doi.org/10.1016/S0263-8223(03)00013-8.
  7. Batou, B., Nebab, M., Bennai, R., Ait Atmane, H., Tounsi, A. and Bouremana, M. (2019), "Wave dispersion properties in imperfect sigmoid plates using various HSDTs", Steel Compos. Struct., 33(5), 699-716. https://doi.org/10.12989/scs.2019.33.5.699.
  8. Belbachir, N., Draiche, K., Bousahla, A.A., Bourada, M., Tounsi, A. and Mahmoud, S.R. (2019), "Bending analysis of anti-symmetric cross-ply laminated plates under nonlinear thermal and mechanical loadings", Steel Compos. Struct., 33(1), 913-924. https://doi.org/10.12989/scs.2019.33.1.081.
  9. Benadouda, M., Ait Atmane, H., Tounsi, A., Bernard, F. and Mahmoud, S.R. (2017), "An efficient shear deformation theory for wave propagation in functionally graded material beams with porosities", Earthq. Struct., 13(3), 255-265. https://doi.org/10.12989/eas.2017.13.3.255.
  10. Benferhat, R., Daouadji, T.H., Mansour, M.S. and Hadji, L. (2016c), "Effect of porosity on the bending and free vibration response of functionally graded plates resting on Winkler-Pasternak foundations", Eartq. Struct., 10(5), 1429-1449. https://doi.org/10.12989/eas.2016.10.6.1429.
  11. Bennai, R., Ait Atmane, H. and Tounsi, A. (2015), "A new higher-order shear and normal deformation theory for functionally graded sandwich beams", Steel Compos. Struct., 19(3), 521-546. https://doi.org/10.12989/scs.2015.19.3.521.
  12. Berghouti, H., Adda Bedia, E.A., Benkhedda, A. and Tounsi, A. (2019), "Vibration analysis of nonlocal porous nanobeams made of functionally graded material", Advan. Nano Res., 7(5), 351-364. https://doi.org/10.12989/anr.2019.7.5.351.
  13. Boukhlif, Z., Bouremana, M., Bourada, F., Bousahla, A.A., Bourada, M., Tounsi, A. and Al-Osta, M.A. (2019), "A simple quasi-3D HSDT for the dynamics analysis of FG thick plate on elastic foundation", Steel Compos. Struct., 31(5), 503-516. https://doi.org/10.12989/scs.2019.31.5.503.
  14. Boulefrakh, L., Hebali, H., Chikh, A., Bousahla, A.A., Tounsi, A. and Mahmoud, S.R. (2019), "The effect of parameters of visco-Pasternak foundation on the bending and vibration properties of a thick FG plate", Geomech. Eng., 18(2), 161-178. https://doi.org/10.12989/gae.2019.18.2.161.
  15. Bourada, F., Bousahla, A.A., Bourada, M., Azzaz, A., Zinata, A., and Tounsi, A. (2019), "Dynamic investigation of porous functionally graded beam using a sinusoidal shear deformation theory", Wind Struct., 28(1), 19-30. https://doi.org/10.12989/was.2019.28.1.019.
  16. Boussoula, A., Boucham, B., Bourada, M., Bourada, F., Tounsi, A., Bousahla, A. A. and Tounsi, A. (2020), "A simple nth-order shear deformation theory for thermomechanical bending analysis of different configurations of FG sandwich plates", Smart Struct. Syst., (Accepted). https://doi.org/10.12989/sss.2020.25.2.197.
  17. Boutaleb, S., Benrahou, K.H., Bakora, A., Algarni, A., Bousahla, A.A., Tounsi, A., Tounsi, A. and Mahmoud, S.R. (2019), "Dynamic Analysis of nanosize FG rectangular plates based on simple nonlocal quasi 3D HSDT", Advan. Nano Res., 7(3), 189-206. https://doi.org/10.12989/anr.2019.7.3.191.
  18. Chaabane, L.A., Bourada, F., Sekkal, M., Zerouati, S., Zaoui, F.Z., Tounsi, A., Derras, A., Bousahla, A.A. and Tounsi, A. (2019), "Analytical study of bending and free vibration responses of functionally graded beams resting on elastic foundation", Struct. Eng. Mech., 71(2), 185-196. https://doi.org/10.12989/sem.2019.71.2.185.
  19. Draiche, K., Bousahla, A.A., Tounsi, A., Alwabli, A. S., Tounsi, A. and Mahmoud, S.R. (2019), "Static analysis of laminated reinforced composite plates using a simple first-order shear deformation theory", Comput. Concrete, 24(4), 369-378. https://doi.org/10.12989/cac.2019.24.4.369.
  20. Draoui, A., Zidour, M., Tounsi, A. and Adim, B. (2019), "Static and dynamic behavior of nanotubes-reinforced sandwich plates using (FSDT)", J. Nano Res., 57, 117-135. https://doi.org/10.4028/www.scientific.net/JNanoR.57.117.
  21. Fazzolari, F.A. (2014), "A refined dynamic stiffness element for free vibration analysis of cross-ply laminated composite cylindrical and spherical shallow shells", Compos. Part B: Eng., 62, 143-158. https://doi.org/10.1016/j.compositesb.2014.02.021.
  22. Fukui, Y. (1991), "Fundamental investigation of functionally gradient material manufacturing system using centrifugal force", Jpn. Soc. Mech. Eng. Int. J., 34(1), 144-148. https://doi.org/10.1299/jsmec1988.34.144.
  23. Hellal, H., Bourada, M., Hebali, H., Bourda, F., Tounsi, A., Bousahla, A.A. and Mahmour, S.R. (2019), "Dynamic and stability analysis of functionally graded material sandwich plates in hygro-thermal environment using a simple higher shear deformation theory", J. Sandwich Struct. Mat., (Accepted), https://doi.org/10.1177/1099636219845841.
  24. Hussain, M., Naeem, M.N., Tounsi, A. and Taj, M. (2019), "Nonlocal effect on the vibration of armchair and zigzag SWCNTs with bending rigidity", Advan. Nano Res., 7(6), 431-442. https://doi.org/10.12989/anr.2019.7.6.431.
  25. Karami, B., Janghorban, M. and Tounsi, A. (2019a), "Wave propagation of functionally graded anisotropic nanoplates resting on Winkler-Pasternak foundation", Struct. Eng. Mech., 7(1), 55-66. https://doi.org/10.12989/sem.2019.70.1.055.
  26. Karami, B., Shahsavari, D., Janghorban, M. and Tounsi, A. (2019b), "Resonance behavior of functionally graded polymer composite nanoplates reinforced with grapheme nanoplatelets", Int. J. Mecha. Sci., 156, 94-105. https://doi.org/10.1016/j.ijmecsci.2019.03.036.
  27. Karami, B., Janghorban, M. and Tounsi, A. (2019c), "Galerkin's approach for buckling analysis of functionally graded anisotropic nanoplates/different boundary conditions", Eng. Comput., 35(4), 1297-1316. https://doi.org/10.1007/s00366-018-0664-9.
  28. Karami, B., Janghorban, M. and Tounsi, A. (2019d), "On exact wave propagation analysis of triclinic material using three dimensional bi-Helmholtz gradient plate model", Struct. Eng. Mech., 69(5), 487-497. https://doi.org/10.12989/sem.2019.69.5.487.
  29. Karami, B., Janghorban, M. and Tounsi, A. (2019e), "On pre stressed functionally graded anisotropic nanoshell in magnetic field", J. Brazil. Soc. Mech. Sci. Eng., 41(11), 495. https://doi.org/10.1007/s40430-019-1996-0.
  30. Khiloun, M., Bousahla, A.A., Kaci, A., Bessaim, A., Tounsi, A. and Mahmoud, S.R. (2019), "Analytical modeling of bending and vibration of thick advanced composite plates using a four-variable quasi 3D HSDT", Eng. Comput., 1-15, https://doi.org/10.1007/s00366-019-00732-1.
  31. Koizumi, M. (1997), "FGM activities in Japan", Compos. Part B: Eng., 28(1-2), 1-4. https://doi.org/10.1016/S1359-8368(96)00016-9.
  32. Mahmoud, S.R. and Tounsi, A. (2019), "On the stability of isotropic and composite thick plates", Steel Compos. Struct., 33(4), 551-568. https://doi.org/10.12989/scs.2019.33.4.551.
  33. Mahmoudi, A., Benyoucef, S., Tounsi, A., Benacour, A., Adda Bedia, E.A. and Mahmoud, S.R. (2019), "A refined quasi-3D shear deformation theory for thermo-mechanical behavior of functionally graded sandwich plates on elastic foundations", J. Sandwich Struct. Mat., 21(6), 1906-1926. https://doi.org/10.1177%2F1099636217727577. https://doi.org/10.1177/1099636217727577
  34. Medani, M., Benahmed, A., Zidour, M., Heireche, H., Tounsi, A., Bousahla, A.A., Tounsi, A. and Mahmoud, S.R. (2019), "Static and dynamic behavior of (FG-CNT) reinforced porous sandwich plate", Steel Compos. Struct., 32(5), 595-610. https://doi.org/10.12989/scs.2019.32.5.595.
  35. Meksi, R., Benyoucef, S., Mahmoudi, A., Tounsi, A., Adda Bedia, E.A. and Mahmoud, S.R. (2019), "An analytical solution for bending, buckling and vibration responses of FGM sandwich plates", J. Sandw. Struct. Mater., 21(2), 727-757. https://doi.org/10.1177%2F1099636217698443. https://doi.org/10.1177/1099636217698443
  36. Mirza, S.B., Yaqoob, Y. and Hasan Mohammad, K. (2018),"Analysis of Laminated and FGM Beams using Various Theories", IOP Confer. Ser. Mat. Sci. Eng., 404(1), 012030. https://doi.org/10.1088/1757-899X/404/1/012030
  37. Pan, E. and Han, F. (2005), "Exact solution for functionally graded and layered magneto-electro-elastic plates", Int. J. Eng. Sci., 43(3-4), 321-339. https://doi.org/10.1016/j.ijengsci.2004.09.006.
  38. Reddy, J.N. (2004), "Mechanics of laminated composite plates and shells, theory and analysis", CRC Press. Ohio. U.S.A.
  39. Sahla, M., Saidi, H., Draiche, K., Bousahla, A.A., Bourada, F. and Tounsi, A. (2019), "Free vibration analysis of angle-ply laminated composite and soft core sandwich plates", Steel Compos. Struct., 33(5), 663-679. https://doi.org/10.12989/scs.2019.33.5.663.
  40. Salah, F., Boucham, B., Bourada, F., Benzair, A., Bousahla, A.A. and Tounsi, A. (2019), "Investigation of thermal buckling properties of ceramic-metal FGM sandwich plates using 2D integral plate model", Steel Compos. Struct., 33(6), 805-822. https://doi.org/10.12989/scs.2019.33.6.805.
  41. Semmah, A., Heireche, H., Bousahla, A.A. and Tounsi, A. (2019), "Thermal buckling analysis of SWBNNT on Winkler foundation by non local FSDT", Advan. Nano Res., 7(2), 89-98. https://doi.org/10.12989/anr.2019.7.2.089.
  42. Sayyad, A.S. and Ghugal, Y.M. (2019), "A unified five-degree-of freedom theory for the bending analysis of softcore and hardcore functionally graded sandwich beams and plates", J. Sandwich Struct. Mat., 2019, https://doi.org/10.1177%2F1099636219840980.
  43. Simsek, M. (2009), "Static analysis of a functionally graded beam under a uniformly distributed load by Ritz method", Int. J. Eng. Appl. Sci., 1(3),1-11.
  44. Thai, H.T. and Vo, T.P. (2012), "Bending and free vibration of functionally graded beams using various higher-order shear deformation beam theories", Int. J. Mech. Sci., 62(1), 57-66. https://doi.org/10.1016/j.ijmecsci.2012.05.014.
  45. Tlidji, Y., Zidour, M., Draiche, K., Safa, A., Bourada, M., Tounsi, A., Bousahla, A.A. and Mahmoud, S.R. (2019), "Vibration analysis of different material distributions of functionally graded microbeam", Struct. Eng. Mech., 69(6), 637-649. https://doi.org/10.12989/sem.2019.69.6.637.
  46. Venkataraman, S. and Sankar, B.V. (2001), "Analysis of sandwich beams with functionally graded core", Proceedings of the 42nd AIAA/ASME/ASCE/AHS/ASC Structures, Struct. Dyn., Mat. Conference, Seattle, AIAA, 1281, 16-19.
  47. Viola, E., Rossetti, L., Fantuzzi, N. and Tornabene, F. (2014), "Static analysis of functionally graded conical shells and panels using the generalized unconstrained third order theory coupled with the stress recovery", Compos. Struct., 112, 44-65. https://doi.org/10.1016/j.compstruct.2014.01.039.
  48. Yamanouchi, M., Koizumi, M. and Shiota, I. (1990), "Functionally gradient materials", Proceedings of the 1st International Symposium on Functionally Gradient Materials.
  49. Zaoui, F.Z., Ouinas, D. and Tounsi, A. (2019), "New 2D and quasi-3D shear deformation theories for free vibration of functionally graded plates on elastic foundations", Compos. Part B, 159, 231-247. https://doi.org/10.1016/j.compositesb.2018.09.051.
  50. Zarga, D., Tounsi, A., Bousahla, A.A., Bourada, F. and Mahmoud, S.R. (2019), "Thermomechanical bending study for functionally graded sandwich plates using a simple quasi-3D shear deformation theory", Steel Compos. Struct., 32(3), 389-410. https://doi.org/10.12989/scs.2019.32.3.389.

Cited by

  1. Physical stability response of a SLGS resting on viscoelastic medium using nonlocal integral first-order theory vol.37, pp.6, 2020, https://doi.org/10.12989/scs.2020.37.6.695
  2. Confinement effectiveness of Timoshenko and Euler Bernoulli theories on buckling of microfilaments vol.11, pp.1, 2021, https://doi.org/10.12989/acc.2021.11.1.081