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FINITELY GENERATED G-PROJECTIVE

MODULES OVER PVMDS

Kui Hu, Jung Wook Lim, and Shiqi Xing

Abstract. Let M be a finitely generated G-projective R-module over a

PVMD R. We prove that M is projective if and only if the canonical
map θ : M

⊗
RM

∗ → HomR(HomR(M,M), R) is a surjective homomor-

phism. Particularly, if G-gldim(R) 6 ∞ and ExtiR(M,M) = 0 (i > 1),
then M is projective.

1. Introduction

Throughout this note, all rings are commutative with identity element and
all modules are unitary. For convenience, we denote the R-module HomR(X,R)
and HomR(HomR(X,R), R) by X∗ and X∗∗ respectively for any R-module X.

Let R be a domain with quotient field K. For a fractional ideal J of R, J−1

is defined as follows:

J−1 = {x ∈ K |xJ ⊂ R}.
A finitely generated ideal J is said to be a GV -ideal (denoted by J ∈ GV (R))
if J−1 = R. An element x of an R-module M is said to be GV-torsion if
there exists some J ∈ GV (R) such that Jx = 0. An R-module M is said
to be GV-torsion if every element of M is GV-torsion. If for any x ∈ M
and any J ∈ GV (R), Jx = 0 implies x = 0, then M is said to be GV-
torsion-free. The w-envelope Mw of a GV-torsion-free module M is defined by
Mw = {x ∈ E(M) | Jx ⊂M for some J ∈ GV (R)}.

In 1997, Wang and McCasland [19] introduced the concept of w-modules over
a domain. A GV-torsion-free module is a w-module if and only if Mw = M .
A fractional ideal I of a domain R is said to be w-invertible when (II−1)w =
R. A domain R is said to be a PVMD when any nonzero finitely generated
ideal of R is w-invertible. Equivalently, R is a PVMD if and only if Rm is a
valuation domain for any maximal w-ideal m. Since coherent domains are finite
conductor domains, it follows from [22, Theorem 2] that coherent integrally
closed domains are PVMDs.
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It was proved in [3, Corollary 2.3] that the class of all Gorenstein projective
(G-projective for short) R-modules and the class of all projective R-modules
are the same class when wgldim(R) 6 ∞. Particularly, if R is a Prüfer do-
main, then any G-projective R-module is projective. Since PVMDs are a kind
of generalization of Prüfer domains, it is natural to ask whether G-projective
modules over PVMDs are projective or not. In this paper, we prove that if M is
a finitely generated G-projective R-module over a PVMD R, then M is projec-
tive if and only if the canonical map θ : M

⊗
RM

∗ → HomR(HomR(M,M), R)
is a surjective homomorphism.

Recall a left R-module M is called FP-injective [16] if Ext1R(F,M) = 0 for
any finitely presented left R-module F . Accordingly the FP-injective dimension
of M , denoted by FP-idR(M), is defined to be the smallest n > 0 such that
Extn+1

R (F,M) = 0 for all finitely presented left R-modules F (if no such n
exists, set FP-idR(M) = ∞). An n-FC ring is a coherent ring with self-FP-
injective dimension n, i.e., FP-idR(R) 6 n. These rings were introduced and
studied by Ding and Chen in [8] and [9]. An n-FC ring is also called “a
Ding-Chen ring” in [12]. In this paper, we prove that if R is a coherent and
integrally closed domain such that FP-idR(R) 6 n (or wGgldim(R) 6 n) and
if M is a finitely generated G-projective R-module such that ExtiR(M,M) = 0
(i = 1, 2, . . . , n− 1), then M is projective. We also prove that if R is a PVMD
such that G-gldim(R) 6∞, then finitely generated self-orthogonalG-projective
R-modules are projective. For unexplained concepts and notations, one can
refer to [1, 10,13,15].

2. Weak Gorenstein projective modules over PVMDs

The author in [11] introduced weak Gorenstein projective modules. Recall
that anR-moduleM is called weak Gorenstein projective if there exists an exact
sequence of projective R-modules P = · · · → P1 → P0 → P 0 → P 1 → · · · such
that: M = ker(P 0 → P 1). Obviously, any Gorenstein projective module is
weak Gorenstein projective. Let R be a PVMD and M be a weak Gorenstein
projective R-module. Next we will prove that Mm is a projective Rm module
for any maximal w-ideal m. First we need the following lemma.

Lemma 2.1. Let R be a ring such that wgldim(R) 6 ∞. Then any weak
Gorenstein projective R-module is projective.

Proof. Let M be a weak Gorenstein projective R-module. There exists the
following exact sequence of projective R-modules:

· · · dn // Pn−1
dn−1 // · · · d1 // P0

d0 // P−1
d−1 // P−2 // · · ·

such that: M = Im(d0). Denote the image of di by Ki, we get the following
short exact sequences:

0 // Ki
// Pi−1 // Ki−1 // 0, (i ∈ Z).
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By adding such sequences, we get the following short exact sequence:

(1) 0 //⊕Ki
//⊕Pi //⊕Ki

// 0.

By combining such sequences one by one, we can get an exact sequence of
sufficient length:

0 //⊕Ki
//⊕Pi // · · · //⊕Pi //⊕Ki

// 0 .

Since wgldim(R) 6∞, it is easy to see that
⊕
Ki is flat. Considering sequence

(1), we will get that
⊕
Ki is projective by [7, Theorem 2.5]. Because M =

Im(d0) = K0, we get that M is also projective. �

Theorem 2.2. Let R be a PVMD and m be a maximal w-ideal. If M is a
G-projective R-module, then Mm is a projective Rm-module.

Proof. Since R is a PVMD and m is a maximal w-ideal, Rm is a valuation
domain, and hence wgldim(Rm) 6 1. By Lemma 2.1, we only need to prove that
Mm is a weak Gorenstein projective Rm-module. Because M is a Gorenstein
projective R-module, there exists an exact sequence of projective R-modules:

· · · dn // Pn−1
dn−1 // · · · d1 // P0

d0 // P−1
d−1 // P−2 // · · ·

such that: M = Im(d0). Since Rm is a flat R-module, we can get the following
exact sequence of projective Rm-modules:

· · ·
d′n // (Pn−1)m

d′n−1 // · · ·
d′1 // (P0)m

d′0 // (P−1)m
d′−1 // (P−2)m // · · ·

such that: Mm = Im(d′0). Therefore Mm is a weak Gorenstein projective Rm-
module. �

In 2010, Yin et al. [21] defined w-modules over general commutative rings.
A finitely generated ideal J of R is called a Glaz-Vasconcelos ideal (GV-ideal
for short), denoted by J ∈ GV (R), if the natural homomorphism ϕ : R →
J∗ = HomR(J,R) is an isomorphism. Equivalently, J ∈ GV (R) if and only
if HomR(R/J,R) = 0 and Ext1R(R/J,R) = 0. A module M is called a w-
module if HomR(R/J,M) = 0 and Ext1R(R/J,M) = 0 for any J ∈ GV (R).
This definition is consistent with that over domains. It is easy to see that free
modules, hence projective modules are w-modules. Next we show that weak
Gorenstein projective R-modules are w-modules.

Proposition 2.3. If M is a weak Gorenstein projective R-module, then M is
a w-module.

Proof. Since M is weak Gorenstein projective, there exists a short exact se-
quence:

0 −→M −→ P −→ N −→ 0,

where P is projective and N is a submodule of some free module. Because free
modules are GV-torsion-free, N is also GV-torsion-free. Notice that P is also
a w-module, we get that M is a w-module by [18, Theorem 6.1.17]. �
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Since G-projective modules are weak Gorenstein projective, we surely get
that any G-projective modules are w-modules.

Let S be a multiplicative closed set in the ring R, M and N be R-modules.
Since we need localization, we consider the following homomorphism of RS-
modules:

ϕ : HomR(M,N)S → HomRS
(MS , NS)

such that:

ϕ(
f

s
)(
x

1
) =

f(x)

s
,

where s ∈ S, x ∈ M and f ∈ HomR(M,N). The following lemma is (6) and
(8) of [17, Theorem 3.4.8].

Lemma 2.4. Let S be a multiplicative closed set which is consisted of some
nonzero-divisors in the ring R, M and N be R-modules, N be torsion-free.

(1) If M is finitely generated, then ϕ is an isomorphism.
(2) If M is a submodule of some finitely presented module F and ( FM )S is a

projective RS-module, then ϕ is an isomorphism.

Let R be a domain and M be a finitely generated G-projective R-module.
Immediately we get the following isomorphism of Rm-modules:

ϕM : HomR(M,M)m → HomRm
(Mm,Mm),

where m is any prime ideal. Furthermore, we can prove the following proposi-
tion.

Proposition 2.5. Let R be a PVMD and M a finitely generated G-projective
R-module and m be a maximal w-ideal. Then the canonical homomorphism of
Rm-modules:

η : HomR(HomR(M,M), R)m → HomRm
(HomRm

(Mm,Mm), Rm)

is an isomorphism.

Proof. By Lemma 2.4, we only need to prove that the module HomR(M,M)
is a submodule of some finitely presented module F and ( F

HomR(M,M) )m is a

projective Rm-module. Since M is finitely generated G-projective, there exists
a short exact sequence of R-modules:

0 −→M −→ P −→ G −→ 0,

where P is finitely generated and projective and G is G-projective by [20,
Proposition 2.6]. Without loss of generality, we can assume that M ⊂ P and P
is finitely generated free. Applying the functor HomR(M,−) on this sequence,
we get that the following exact sequence:

0 −→ HomR(M,M) −→ HomR(M,P )

−→ HomR(M,G) −→ Ext1R(M,M) −→ 0.

Since P is finitely generated free, HomR(M,P ) is isomorphic to a finite direct
sum of some copies of M∗ = HomR(M,R). Since M∗ is super finitely presented
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by [20, Proposition 2.6], HomR(M,P ) is finitely presented. So we can let
F = HomR(M,P ). In order to prove that ( F

HomR(M,M) )m is a projective Rm-

module, we apply the functor HomRm
(Mm,−) on the short exact sequence of

Rm-modules:
0 −→Mm −→ Pm −→ Gm −→ 0.

Because Mm is a projective Rm-module by Theorem 2.2, we get the following
exact sequence:

0 −→ HomRm
(Mm,Mm) −→ HomRm

(Mm, Pm) −→ HomRm
(Mm, Gm) −→ 0.

Since Gm is also a projective Rm-module by Theorem 2.2, the Rm-module
HomRm

(Mm, Gm) is projective. Therefore by Lemma 2.4,

(
F

HomR(M,M)
)m = (

HomR(M,P )

HomR(M,M)
)m ∼=

HomRm
(M

m
, P

m
)

HomRm
(M

m
,M

m
)

∼= HomRm
(Mm, Gm)

is also a projective Rm-module. �

Lemma 2.6 ([21, Theorem 2.8]). Let A be an R-module and M a w-module.
Then HomR(A,M) is a w-module. In particular, A∗ and A∗∗ are w-modules.
Therefore, reflexive modules are w-modules.

Since G-projective modules are w-modules, we get that HomR(M,M) is a
w-module for any G-projective module M .

Lemma 2.7 ([17, Theorem 8.3.2]). Let A, B be w-modules and f : A → B a
homomorphism. Then f is an isomorphism if and only if fm : Am → Bm is an
isomorphism for any maximal w-ideal m of R.

Let M be an R-module. Define

θ : M ⊗RM∗ → HomR(HomR(M,M), R)

by
θ(a⊗ f)(g) = f(g(a)), a ∈M, f ∈M∗, g ∈ HomR(M,M).

If M is a finitely generated projective module, then θ is an isomorphism
by [17, Theorem 3.4.5]. Next we prove that if M is a finitely generated G-
projective module over a PVMD, then the converse also holds.

Let R be a domain. For any module X, denote the GV -torsion submodule
of X by

TorGV(X ) = {x ∈ X | Jx = 0 for some GV ideal J of R}.
TorGV(X ) is the maximal GV -torsion submodule of X.

Lemma 2.8. Let R be a PVMD and M be a finitely generated G-projective
R-module.

θ : M ⊗RM∗ → HomR(HomR(M,M), R)

is defined as above. Then both coker(θ) and ker(θ) are GV -torsion. Further-
more, ker(θ) is exactly TorGV(M ⊗R M ∗).
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Proof. Since a module N is GV -torsion if and only if Nm = 0 for any maximal
w-ideal m of R [18, Theorem 6.2.15], we only need to prove that

θm : (M ⊗RM∗)m → (HomR(HomR(M,M), R))m

is an isomorphism. Because Mm is a projective Rm-module, the canonical map:

(Mm ⊗Rm
M∗m )→ (HomRm

(HomRm
(Mm,Mm), Rm))

is an isomorphism by Lemma [17, Theorem 3.4.5]. Notice that

η : HomR(HomR(M,M), R)m → HomRm
(HomRm

(Mm,Mm), Rm)

is an isomorphism by Proposition 2.5. It follows from the canonical isomor-
phism (M ⊗RM∗)m → (Mm ⊗Rm

M∗m ) that θm is also an isomorphism. �

Let M be an R-module. Define

ξ : M ⊗RM∗ → HomR(M,M)

by

ξ(x⊗ f)(y) = f(y)x, x ∈M, y ∈M, f ∈M∗ = HomR(M,R).

The following result can be found in [14, Exercise 2.20].

Lemma 2.9. Let R be any ring and

ξ : M ⊗RM∗ → HomR(M,M) = End(M)

be defined as above. Then the following statements are equivalent:
(1) M is a finitely generated projective module.
(2) ξ is an isomorphism.
(3) ξ is a surjective homomorphism.

We sill need the following lemma.

Lemma 2.10. Let R be a PVMD and M be a finitely generated G-projective
R-module.

ξ : M ⊗RM∗ → HomR(M,M)

is defined as above. Then both coker(ξ) and ker(ξ) are GV -torsion. Further-
more, ker(ξ) is exactly TorGV(M ⊗R M ∗).

Proof. Since

ϕM : HomR(M,M)m → HomRm
(Mm,Mm)

is an isomorphism for any maximal w-ideal m by Lemma 2.4, the proof is
similar to that of Lemma 2.8. �

Now we can prove the main theorem of this section.
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Theorem 2.11. Let R be a PVMD and M be a finitely generated G-projective
R-module. If θ and ξ are defined as in Lemma 2.8 and Lemma 2.9 respectively,
then there exists an isomorphism ψ : HomR(HomR(M,M), R)→ HomR(M,M)
and we have the following commutative diagram with exact rows:

0 // T // M ⊗M ∗ θ // HomR(HomR(M,M), R)

ψ

��

// cokerθ

α

��

// 0

0 // T // M ⊗M∗
ξ // HomR(M,M) // cokerξ // 0

where T = TorGV(M ⊗R M ∗) and α is also an isomorphism.

Proof. By Lemma 2.8 and Lemma 2.10, we have kerθ = kerξ = T . Thus we
have the following commutative diagram with exact rows:

0 // T // M ⊗M ∗ // Imθ

δ

��

// 0

0 // T // M ⊗M∗ // Imξ // 0

where δ is also an isomorphism by Five Lemma. If we denote the inclusion
map Imξ ↪→ HomR(M,M) by λ, then λδ is a homomorphism from Imθ to
HomR(M,M). Because HomR(M,M) is a w-module and cokerθ is GV-torsion,
Ext1R(cokerθ,HomR(M,M)) = 0 by [18, Theorem 6.2.7]. Now, we denote the
module HomR(M,M) by H. By using the functor HomR(−, H) on the short
exact sequence

0 // Imθ
i // HomR(H,R) // cokerθ // 0,

we get the following exact sequence:

HomR(HomR(H,R), H) // HomR(Imθ,H) // 0.

This means that for the homomorphism λδ : Imθ → H, there exists a homo-
morphism ψ from HomR(H,R) to H such that λδ = ψi. Therefore, we have
the following commutative diagram with exact rows:

0 // Imθ

δ

��

i // HomR(H,R)

ψ

��

// cokerθ

α

��

// 0

0 // Imξ
λ // H // cokerξ // 0

where α is induced by the left commutative square. Now, combining the above
two horizontal ladders, we get the desired commutative diagram. Let m be any
maximal w-ideal of R. Then Mm is a projective Rm module by Lemma 2.2. Since
cokerθ and cokerξ are GV-torsion, ξm = ψmθm. It can be seen from the proof
of Lemma 2.8 and Lemma 2.10 that ξm and θm are isomorphisms. Therefore
ψm is also an isomorphism. Since G-projective modules are w-modules, H∗ =
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HomR(H,R) and H = HomR(M,M) are w-modules by Lemma 2.6. Thus
ψ is an isomorphism by Lemma 2.7. So α is also an isomorphism by Five
Lemma. �

Corollary 2.12. Let R be a PVMD and M be a finitely generated G-projective
R-module. If θ and ξ are defined as in Lemma 2.8 and Lemma 2.9 respectively,
then M is projective if and only if θ is a surjective homomorphism.

Proof. By Lemma 2.9, M is projective if and only if ξ is a surjective homo-
morphism, that is, if and only if cokerξ = 0. By Lemma 2.11, cokerξ ∼= cokerθ.
Therefore, M is projective if and only if cokerθ = 0, that is to say, if and only
if θ is a surjective homomorphism. �

3. Some sufficient conditions for G-projective modules over
PVMDs to be projective

Let R be a ring. An R-module M is called FP-injective (or absolutely
pure) if Ext1R(N,M) = 0 for all finitely presented left R-modules N . The FP-
injective dimension of M , denoted by FP-id(M ), is defined to be the smallest
nonnegative integer n such that Extn+1

R (F,M) = 0 for every finitely presented
R-module F (if no such n exists, set FP-id(M ) =∞).

Lemma 3.1. Let R be an n-FC ring and M be a finitely generated G-projective
R-module. If ExtiR(M,M) = 0 (i = 1, 2, . . . , n− 1), then

θ : M ⊗RM∗ → HomR(HomR(M,M), R)

is a surjective homomorphism.

Proof. As a finitely generated submodule of a free module over a coherent ring,
M is in fact finitely presented. So we have the following exact sequence

· · · dn // Fn−1
dn−1 // · · · d3 // F2

d2 // F1
d1 // F0

// M // 0,

where the Fi’s are finitely generated free modules. Denote the image of di by
Ni. Then we have Ext1R(Ni,M) ∼= Exti+1

R (M,M) = 0 (i = 1, 2, . . . , n − 2).
Using the functor HomR(−,M) on this sequence, we get the following two
exact sequences

0→ HomR(N1,M)→ HomR(F1,M)→ · · · → HomR(Fn,M)→ D → 0

and

0 // HomR(M,M) // HomR(F0,M) // HomR(N1,M) // 0,

where D is the cokernel of the map HomR(Fn−1,M)→ HomR(Fn,M). Denote
HomR(N1,M) by L. Then we have that Ext1R(L,R) ∼= Extn+1

R (D,R) since
all these Hom(Fi,M) are Gorenstein projective. It can be seen that all the
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modules that appeared in these sequences are finitely presented. Because FP-
idR(R) 6 n, Extn+1

R (D,R) = 0 holds. Therefore, Ext1R(L,R) = 0. Now, using
the functor Hom(−, R) on the short exact sequence

0 // HomR(M,M) // HomR(F0,M) // L // 0,

we get the following exact sequence.

HomR(HomR(F0,M), R) // HomR(HomR(M,M), R) // 0.

Thus, we get the following commutative diagram with exact rows:

F0 ⊗R HomR(M,R)

θF0

��

// M ⊗RM∗

θ

��

// 0

HomR(HomR(F0,M), R) // HomR(HomR(M,M), R) // 0.

Since θF0 is an isomorphism by [17, Theorem 3.4.5], θ is a surjective homomor-
phism. �

Recall that the weak Gorenstein global dimensions (wGgldim(R)) of rings
[5] is defined as follows: wGgldim(R) = sup{GfdR(M) |M is an R-module}.
From [9, Theorem 7] (see also [2] and [4]), for a positive integer n and a com-
mutative coherent ring R, wGgldim(R) = n if and only if R is an n-FC ring.
Recall that a finitely generated R-module M is called self-orthogonal [6] if
ExtiR(M,M) = 0 for any i > 1.

Lemma 3.2. Let R be a ring such that G-gldim(R) <∞ and M be a finitely
generated G-projective R-module. If M is self-orthogonal, then

θ : M ⊗RM∗ → HomR(HomR(M,M), R)

is a surjective homomorphism.

Proof. Since G-gldim(R) < ∞, M is super finitely presented by [20, Corollary
3.4]. Also notice that the module L which appears in the proof of Lemma 3.1
is G-projective, and so Ext1R(L,R) = 0. Thus the rest of the proof is similar
to that of Lemma 3.1. �

Theorem 3.3. Let R be a coherent and integrally closed domain such that
FP-idR(R) 6 n or (wGgldim(R) 6 n). If M is a finitely generated G-projective
module such that ExtiR(M,M) = 0 (i = 1, 2, . . . , n− 1), then M is projective.

Proof. Since R is a coherent integrally closed domain, R is a PVMD. In order
to prove that M is projective, we only need to show that θ is a surjective
homomorphism by Corollary 2.12. But this follows from Lemma 3.1. �

Theorem 3.4. Let R be a PVMD with G-gldim(R) < ∞. Then any finitely
generated self-orthogonal G-projective module over R is projective.
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Proof. The result follows from Corollary 2.12 since θ is a surjective homomor-
phism by Lemma 3.2. �
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