Bull. Korean Math. Soc. 57 (2020), No. 3, pp. 803-813
https://doi.org/10.4134/BKMS.b190531
pISSN: 1015-8634 / eISSN: 2234-3016

FINITELY GENERATED G-PROJECTIVE
MODULES OVER PVMDS

Kur Hu, JuNnG WoOOK LiMm, AND SHIQI XING

ABSTRACT. Let M be a finitely generated G-projective R-module over a
PVMD R. We prove that M is projective if and only if the canonical
map 0 : M @y M* — Homg(Hompg(M, M), R) is a surjective homomor-
phism. Particularly, if G-gldim(R) < co and Exth (M, M) =0 (i > 1),
then M is projective.

1. Introduction

Throughout this note, all rings are commutative with identity element and
all modules are unitary. For convenience, we denote the R-module Homp (X, R)
and Hompg(Hompg (X, R), R) by X* and X** respectively for any R-module X.

Let R be a domain with quotient field K. For a fractional ideal J of R, J~!
is defined as follows:

J'={zeK|zJCR)}.
A finitely generated ideal J is said to be a GV-ideal (denoted by J € GV (R))
if J7! = R. An element z of an R-module M is said to be GV-torsion if
there exists some J € GV (R) such that Jr = 0. An R-module M is said
to be GV-torsion if every element of M is GV-torsion. If for any x € M
and any J € GV(R), Jr = 0 implies * = 0, then M is said to be GV-
torsion-free. The w-envelope M,, of a GV-torsion-free module M is defined by
My, ={x € E(M) | Jx C M for some J € GV(R)}.

In 1997, Wang and McCasland [19] introduced the concept of w-modules over
a domain. A GV-torsion-free module is a w-module if and only if M,, = M.
A fractional ideal I of a domain R is said to be w-invertible when (I771),, =
R. A domain R is said to be a PVMD when any nonzero finitely generated
ideal of R is w-invertible. Equivalently, R is a PVMD if and only if R, is a
valuation domain for any maximal w-ideal m. Since coherent domains are finite
conductor domains, it follows from [22, Theorem 2| that coherent integrally
closed domains are PVMDs.
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It was proved in [3, Corollary 2.3] that the class of all Gorenstein projective
(G-projective for short) R-modules and the class of all projective R-modules
are the same class when wgldim(R) < co. Particularly, if R is a Priifer do-
main, then any G-projective R-module is projective. Since PVMDs are a kind
of generalization of Priifer domains, it is natural to ask whether G-projective
modules over PVMDs are projective or not. In this paper, we prove that if M is
a finitely generated G-projective R-module over a PVMD R, then M is projec-
tive if and only if the canonical map 6 : M @), M* — Hompg(Hompg (M, M), R)
is a surjective homomorphism.

Recall a left R-module M is called FP-injective [16] if Extk(F, M) = 0 for
any finitely presented left R-module F. Accordingly the FP-injective dimension
of M, denoted by FP-idg(M), is defined to be the smallest n > 0 such that
Ext’yt(F, M) = 0 for all finitely presented left R-modules F (if no such n
exists, set FP-idg(M) = 00). An n-FC ring is a coherent ring with self-FP-
injective dimension n, i.e., FP-idg(R) < n. These rings were introduced and
studied by Ding and Chen in [8] and [9]. An n-FC ring is also called “a
Ding-Chen ring” in [12]. In this paper, we prove that if R is a coherent and
integrally closed domain such that FP-idr(R) < n (or wGgldim(R) < n) and
if M is a finitely generated G-projective R-module such that Ext% (M, M) = 0
(i=1,2,...,n—1), then M is projective. We also prove that if R is a PVMD
such that G-gldim(R) < oo, then finitely generated self-orthogonal G-projective
R-modules are projective. For unexplained concepts and notations, one can
refer to [1,10,13,15].

2. Weak Gorenstein projective modules over PVMDs

The author in [11] introduced weak Gorenstein projective modules. Recall
that an R-module M is called weak Gorenstein projective if there exists an exact
sequence of projective R-modules P = --- — P — Py — PY — P! — ... such
that: M = ker(P° — P'). Obviously, any Gorenstein projective module is
weak Gorenstein projective. Let R be a PVMD and M be a weak Gorenstein
projective R-module. Next we will prove that M, is a projective R,, module
for any maximal w-ideal m. First we need the following lemma.

Lemma 2.1. Let R be a ring such that wgldim(R) < oco. Then any weak
Gorenstein projective R-module is projective.

Proof. Let M be a weak Gorenstein projective R-module. There exists the
following exact sequence of projective R-modules:

dn dn— 1 d1

do d71
Pn—l

Py

such that: M = Im(dp). Denote the image of d; by K;, we get the following
short exact sequences:

0 K; P,_4 K;_1 0, (Z € Z)
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By adding such sequences, we get the following short exact sequence:

By combining such sequences one by one, we can get an exact sequence of
sufficient length:

Since wgldim(R) < oo, it is easy to see that @ K is flat. Considering sequence
(1), we will get that @ K; is projective by [7, Theorem 2.5]. Because M =
Im(dy) = Ko, we get that M is also projective. O

Theorem 2.2. Let R be a PVMD and m be a mazimal w-ideal. If M is a
G-projective R-module, then My, is a projective Ry,-module.

Proof. Since R is a PVMD and m is a maximal w-ideal, Ry, is a valuation
domain, and hence wgldim(R,,) < 1. By Lemma 2.1, we only need to prove that
My, is a weak Gorenstein projective Ry,-module. Because M is a Gorenstein
projective R-module, there exists an exact sequence of projective R-modules:

dn, dn—l d] do d—l
P, e Py Py P_,

such that: M = Im(dp). Since Ry, is a flat R-module, we can get the following
exact sequence of projective Ry,-modules:

dy, Ay P d d_,
= (Prt)m — —— (B)m —— (P-1)m —— (P—2)n —— -
such that: My, = Im(dj). Therefore My, is a weak Gorenstein projective Ry-
module. O

In 2010, Yin et al. [21] defined w-modules over general commutative rings.
A finitely generated ideal J of R is called a Glaz-Vasconcelos ideal (G V-ideal
for short), denoted by J € GV (R), if the natural homomorphism ¢ : R —
J* = Hompg(J, R) is an isomorphism. Equivalently, J € GV (R) if and only
if Homp(R/J,R) = 0 and Exth(R/J,R) = 0. A module M is called a w-
module if Homp(R/J, M) = 0 and Extk(R/J, M) = 0 for any J € GV(R).
This definition is consistent with that over domains. It is easy to see that free
modules, hence projective modules are w-modules. Next we show that weak
Gorenstein projective R-modules are w-modules.

Proposition 2.3. If M is a weak Gorenstein projective R-module, then M is
a w-module.

Proof. Since M is weak Gorenstein projective, there exists a short exact se-
quence:

0—M—P—N—0,
where P is projective and NN is a submodule of some free module. Because free
modules are GV-torsion-free, N is also GV-torsion-free. Notice that P is also
a w-module, we get that M is a w-module by [18, Theorem 6.1.17]. O
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Since G-projective modules are weak Gorenstein projective, we surely get
that any G-projective modules are w-modules.

Let S be a multiplicative closed set in the ring R, M and N be R-modules.
Since we need localization, we consider the following homomorphism of Rg-
modules:

¢ : Homp(M, N)s — Hompg, (Mg, Ng)

fyozy _ fle
oDy =1
where s € S, x € M and f € Hompr(M, N). The following lemma is (6) and

(8) of [17, Theorem 3.4.8].

such that:

Lemma 2.4. Let S be a multiplicative closed set which is consisted of some
nonzero-divisors in the ring R, M and N be R-modules, N be torsion-free.
(1) If M is finitely generated, then ¢ is an isomorphism.
(2) If M is a submodule of some finitely presented module F and (%)S s a
projective Rg-module, then ¢ is an isomorphism.

Let R be a domain and M be a finitely generated G-projective R-module.
Immediately we get the following isomorphism of R,-modules:

on : Homp(M, M)y — Homp, (Muy, My),

where m is any prime ideal. Furthermore, we can prove the following proposi-
tion.

Proposition 2.5. Let R be a PVMD and M a finitely generated G-projective
R-module and m be a mazimal w-ideal. Then the canonical homomorphism of
R -modules:

1 : Homp(Homp(M, M), R)m — Hompg,, (Hompg, (M, M), Rm)
is an isomorphism.

Proof. By Lemma 2.4, we only need to prove that the module Hompg (M, M)

is a submodule of some finitely presented module F' and (m)m is a
projective Ry,-module. Since M is finitely generated G-projective, there exists

a short exact sequence of R-modules:
0—M-—P—G—0,

where P is finitely generated and projective and G is G-projective by [20,
Proposition 2.6]. Without loss of generality, we can assume that M C P and P
is finitely generated free. Applying the functor Hompg (M, —) on this sequence,
we get that the following exact sequence:

0 — Homp(M, M) — Hompg(M, P)
— Homg(M, G) — Exty (M, M) — 0.

Since P is finitely generated free, Hompg (M, P) is isomorphic to a finite direct
sum of some copies of M* = Hompg (M, R). Since M* is super finitely presented
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by [20, Proposition 2.6], Homg(M, P) is finitely presented. So we can let
F = Homg (M, P). In order to prove that (m)m is a projective Rp,-
module, we apply the functor Hompg, (Mm, —) on the short exact sequence of
Ry -modules:

0 — My — Pn — G — 0.
Because M, is a projective Ry,-module by Theorem 2.2, we get the following
exact sequence:

0 — Hompg,, (Mn, My) — Hompg,, (Muy, Pn) — Hompg,, (My, Gyn) — 0.

Since Gy, is also a projective Rp-module by Theorem 2.2, the Ry-module
Homp,, (M, Gn) is projective. Therefore by Lemma 2.4,

( F Yo = Homp(M,P), ., Homg (M., P,)
Hompg(M,M)’™ ~ “Hompg(M,M)’™ ~ Hompg_(M,,M,)

= Hompg,,(Mm,Gm)
is also a projective Ry-module. O

Lemma 2.6 ([21, Theorem 2.8]). Let A be an R-module and M a w-module.
Then Hompg(A, M) is a w-module. In particular, A* and A** are w-modules.
Therefore, reflexive modules are w-modules.

Since G-projective modules are w-modules, we get that Hompg (M, M) is a
w-module for any G-projective module M.

Lemma 2.7 ([17, Theorem 8.3.2]). Let A, B be w-modules and f : A — B a
homomorphism. Then f is an isomorphism if and only if fn: An — B, is an
isomorphism for any mazimal w-ideal m of R.

Let M be an R-module. Define
0:M®r M* — Homp(Homp(M, M), R)
by
Ola® f)(g) = f(g(a)), ae M, f € M*, g€ Hompr(M,M).
If M is a finitely generated projective module, then # is an isomorphism
by [17, Theorem 3.4.5]. Next we prove that if M is a finitely generated G-
projective module over a PVMD, then the converse also holds.

Let R be a domain. For any module X, denote the GV-torsion submodule
of X by

Torgv(X) = {z € X | Jr =0 for some GV ideal J of R}.
Torgy(X) is the maximal GV -torsion submodule of X.

Lemma 2.8. Let R be a PVMD and M be a finitely generated G-projective
R-module.

0: M ®r M* — Hompg(Hompg(M, M), R)
is defined as above. Then both coker(f) and ker(0) are GV -torsion. Further-
more, ker(0) is exactly Torgy (M @p M*).
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Proof. Since a module N is GV-torsion if and only if N, = 0 for any maximal
w-ideal m of R [18, Theorem 6.2.15], we only need to prove that
On: (M ®g M*)y — (Hompg(Homp(M, M), R))
is an isomorphism. Because M, is a projective Ry-module, the canonical map:
(My ®r, My) — (Hompg, (Hompg, (My, My), Ry))
is an isomorphism by Lemma [17, Theorem 3.4.5]. Notice that
1 : Homg(Hompg(M, M), R)m — Hompg,, (Hompg, (M, Mu), Rm)

is an isomorphism by Proposition 2.5. It follows from the canonical isomor-
phism (M ®g M*)y = (My ®g, M) that 6, is also an isomorphism. O

Let M be an R-module. Define
&:M®r M* — Homp(M, M)
by
E(z@ ly) = fly)z, v€ M, ye M, feM" =Hompg(M,R).
The following result can be found in [14, Exercise 2.20].
Lemma 2.9. Let R be any ring and
€: M ®p M* — Homp(M, M) = End(M)

be defined as above. Then the following statements are equivalent:
(1) M is a finitely generated projective module.
(2) € is an isomorphism.
(3) € is a surjective homomorphism.

We sill need the following lemma.

Lemma 2.10. Let R be a PVMD and M be a finitely generated G-projective
R-module.

&:M®r M* — Hompg(M, M)

is defined as above. Then both coker(§) and ker(§) are GV -torsion. Further-
more, ker(§) is exactly Torgy(M @p M*).

Proof. Since
wum : Hompg(M, M)y — Homp, (Muy, My)

is an isomorphism for any maximal w-ideal m by Lemma 2.4, the proof is
similar to that of Lemma 2.8. O

Now we can prove the main theorem of this section.
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Theorem 2.11. Let R be a PVMD and M be a finitely generated G-projective
R-module. If 0 and £ are defined as in Lemma 2.8 and Lemma 2.9 respectively,
then there exists an isomorphism 1) : Homg(Hompg(M, M), R) — Hompg(M, M)
and we have the following commutative diagram with exact rows:

0——=T——> Mo M* -~ Homp(Homp(M, M), R) — coker§ —= 0

lw la

0—>T—>M®&M — ~ Homp(M, M) — > cokert —=0
where T = Torgy (M @ M™*) and « is also an isomorphism.

Proof. By Lemma 2.8 and Lemma 2.10, we have kerf = ker{ = T. Thus we
have the following commutative diagram with exact rows:

00— T ——MQIM* ——Imf ——0

]

00— T — MM ——Imf ——0

where § is also an isomorphism by Five Lemma. If we denote the inclusion
map Im¢ — Hompg(M, M) by A, then AJ is a homomorphism from Imé to
Homp(M, M). Because Hompg(M, M) is a w-module and cokerf) is GV-torsion,
Ext k(cokerf, Homp (M, M)) = 0 by [18, Theorem 6.2.7]. Now, we denote the
module Hompg(M, M) by H. By using the functor Homp(—, H) on the short
exact sequence

0—>Imh ——> Homp(H, R) — coker) —— 0,
we get the following exact sequence:
Hompg(Homp(H, R), H) — Homp(Im, H) — 0.

This means that for the homomorphism AJ : Imf — H, there exists a homo-
morphism ¢ from Hompg(H, R) to H such that \d = ti. Therefore, we have
the following commutative diagram with exact rows:

0—>Imh ——> Homp(H, R) — cokerd —— 0

R

0 Im¢ A H coker§{ ——0

where « is induced by the left commutative square. Now, combining the above
two horizontal ladders, we get the desired commutative diagram. Let m be any
maximal w-ideal of R. Then M, is a projective R, module by Lemma 2.2. Since
cokerf and cokeré are GV-torsion, & = ¥ub,. It can be seen from the proof
of Lemma 2.8 and Lemma 2.10 that &, and 6, are isomorphisms. Therefore
1y is also an isomorphism. Since G-projective modules are w-modules, H* =
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Homp(H,R) and H = Hompg(M, M) are w-modules by Lemma 2.6. Thus
1 is an isomorphism by Lemma 2.7. So « is also an isomorphism by Five
Lemma. ]

Corollary 2.12. Let R be a PVMD and M be a finitely generated G-projective
R-module. If 0 and £ are defined as in Lemma 2.8 and Lemma 2.9 respectively,
then M is projective if and only if 0 is a surjective homomorphism.

Proof. By Lemma 2.9, M is projective if and only if £ is a surjective homo-
morphism, that is, if and only if coker§ = 0. By Lemma 2.11, cokeré 22 cokerf.
Therefore, M is projective if and only if cokerf = 0, that is to say, if and only
if 0 is a surjective homomorphism. O

3. Some sufficient conditions for G-projective modules over
PVMDs to be projective

Let R be a ring. An R-module M is called FP-injective (or absolutely
pure) if Ext(N, M) = 0 for all finitely presented left R-modules N. The FP-
injective dimension of M, denoted by FP-id(M), is defined to be the smallest
nonnegative integer n such that Ext}?l(F , M) = 0 for every finitely presented
R-module F' (if no such n exists, set FP-id(M) = o0).

Lemma 3.1. Let R be an n-FC ring and M be a finitely generated G-projective
R-module. If Extp(M, M) =0 (i=1,2,...,n—1), then

0: M ®r M* — Homg(Homg (M, M), R)
is a surjective homomorphism.

Proof. As a finitely generated submodule of a free module over a coherent ring,
M is in fact finitely presented. So we have the following exact sequence

dn dn—1 ds

da
anl

dy

Fy Fy Fo M 0,

where the F;’s are finitely generated free modules. Denote the image of d; by
N;. Then we have Ext}%(Ni,M) = Extgl(M, M)=0(@(=12,...,n—2).
Using the functor Hompg(—, M) on this sequence, we get the following two
exact sequences

0 — Homp (N1, M) — Homp(Fy, M) = --- = Homp(F,,M) - D — 0
and
0 —— Homp(M, M) —— Homp(Fy, M) — Homp(Ny, M) — 0,

where D is the cokernel of the map Hompg(F,,—1, M) — Hompg(F,,, M). Denote
Homp(Ny, M) by L. Then we have that Exty(L, R) = Extl"' (D, R) since
all these Hom(F;, M) are Gorenstein projective. It can be seen that all the
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modules that appeared in these sequences are finitely presented. Because FP-
idr(R) < n, Ext%™ (D, R) = 0 holds. Therefore, Exty (L, R) = 0. Now, using
the functor Hom(—, R) on the short exact sequence

0 —— Homp(M, M) —— Hompg(Fy, M) —= L ——= 0,
we get the following exact sequence.
Hompg(Homp(Fo, M), R) — Homp(Hompg (M, M), R) — 0.
Thus, we get the following commutative diagram with exact rows:

Fy ® g Homp (M, R) M ®pr M*

Jon J/e

Homp(Hompg(Fy, M), R) —— Hompg(Homp (M, M), R) —— 0.

Since O, is an isomorphism by [17, Theorem 3.4.5], 6 is a surjective homomor-
phism. ([

Recall that the weak Gorenstein global dimensions (wGgldim(R)) of rings
[5] is defined as follows: wGgldim(R) = sup{Gfdg(M)| M is an R-module}.
From [9, Theorem 7] (see also [2] and [4]), for a positive integer n and a com-
mutative coherent ring R, wGgldim(R) = n if and only if R is an n-FC ring.
Recall that a finitely generated R-module M is called self-orthogonal [6] if
Exth (M, M) = 0 for any i > 1.

Lemma 3.2. Let R be a ring such that G-gldim(R) < oo and M be a finitely
generated G-projective R-module. If M is self-orthogonal, then

0:M®r M* — Hompr(Homgp(M, M), R)
is a surjective homomorphism.

Proof. Since G-gldim(R) < oo, M is super finitely presented by [20, Corollary
3.4]. Also notice that the module L which appears in the proof of Lemma 3.1
is G-projective, and so Ext}%(L,R) = 0. Thus the rest of the proof is similar
to that of Lemma 3.1. (]

Theorem 3.3. Let R be a coherent and integrally closed domain such that
FP-idr(R) < n or (wGgldim(R) < n). If M is a finitely generated G-projective
module such that Extp(M, M) =0 (i=1,2,...,n—1), then M is projective.

Proof. Since R is a coherent integrally closed domain, R is a PVMD. In order
to prove that M is projective, we only need to show that # is a surjective
homomorphism by Corollary 2.12. But this follows from Lemma 3.1. (]

Theorem 3.4. Let R be a PVMD with G-gldim(R) < oco. Then any finitely
generated self-orthogonal G-projective module over R is projective.
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Proof. The result follows from Corollary 2.12 since 6 is a surjective homomor-
phism by Lemma 3.2. t
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