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HOMOLOGICAL PROPERTIES OF

SEMI-WAKAMATSU-TILTING MODULES

Dajun Liu and Jiaqun Wei

Abstract. For a fixed semi-Wakamatsu-tilting module AT , we gener-

alize the concepts of Auslander class, Bass class, and investigate many
homological properties of such classes. Moreover, we establish an equiv-

alence between the class of 8-T -cotorsionfree modules and a subclass of
the class of T -adstatic modules. Finally, a similar version of Auslander-

Bridger approximation theorem and a nice property of relative cotrans-

pose are obtained.

1. Introduction

It is generally known that Auslander-Bridge transpose [1] plays an important
role in the classical Auslander-Reiten theory. Auslander and Bridge showed
how Auslander-Bridge transpose can be used to investigate n-torsionfree mod-
ules over two-sided rings. A faithfully balanced self-orthogonal bimodule is
called a generalized tilting bimodule by Wakamatsu [16]. Following [10], gener-
alized tilting bimodules are Wakamatsu-tilting modules. Clearly, tilting mod-
ules are Wakamatsu-tilting modules and Wakamatsu-tilting modules are gener-
alized from tilting modules without the restriction of projective dimension [13].
A semidualizing bimodule defined in [11] is also a Wakamatsu-tilting module.

Dibaei and Sadeghi [8] introduced the C-transpose TrCM for a module M
respect to a semidualizing module RC (See [8, Definition 1.3]). Dually, Tang
and Huang [15] introduced and demonstrated the cotranspose of modules with
respect to a semidualizing bimodule RCS . Moreover, they introduced n-C-
cotorsionfree modules and verified that n-C-cotorsionfree modules have many
dual properties of n-torsionfree modules.
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Xi [19] gave the notion of relative transpose of a given module M . This in-
spires us in [12] to introduce the dual concept, n-T -cotorsionfree modules (See
Definition 4.2) defined by the above dual conception relative cotranspose (See
Definition 4.1). Based on these previous work, and in order to further study
8-T -cotorsionfree modules (See Definition 4.2), we replace semidualizing mod-
ules with semi-Wakamatsu-tilting modules ATB to redefine some conceptions
of classes of modules (See [11]). In particular, we define T -Auslander class
AT pBq, T -Bass class BT pAq with respect to ATB (See Definition 3.1), and T -
projective PT pAq (See Definition 3.5). It turn out that many important results
on Auslender and Bass classes with respect to a semidualizing module are still
true in our more general setting.

We mainly prove the following conclusions:

Theorem 1.1. Let U, V P B-mod, S,W P A-mod, and S1 P mod-A.
p1q If U P AT pBq and TorBiě1pT, V q “ 0, then

Extiě1
B pV, Uq – Extiě1

A pT bB V, T bB Uq.

p2q If S P BT pAq and Extiě1
A pT, W q “ 0, then

Extiě1
A pS, W q – Extiě1

B pHomApT, Sq, HomApT, W qq.

p3q If S P AT pBq and TorAiě1pS
1, T q “ 0, then

TorAiě1pS
1, Sq – TorAiě1pS

1 bA T, HomApT, Sqq.

Moreover, these isomorphisms are natural isomorphisms of abelian groups.

Indeed, the above theorem is an essential characterization on modules in
AT pBq,BT pAq.

We denote that S “ tM P B-mod | Extiě1
B pM,T`q “ 0u and T “ AdstpT qX

S (See Remark 2.6), where p´q` “ HomZp´,Q{Zq with Z the additive group
of integers and Q the additive group of rational numbers. The class of 8-
T-cotorsionfree modules is denoted by 4pAq. If 4pAq Ď CoprepAT q (resp.,

AT
K Ď CoprepAT qq, we have:

Theorem 1.2. Let ATB be a semi-Wakamatsu-tilting module. There is an
equivalence of categories p´q˚ : 4pAq è T : T bB ´.

Thus, the theorem provides an equivalence between a subcategory of A-mod
associated to AT and a subcategory of B-mod associated with the character
module T`.

Specialized to tilting modules and Wakamatsu-tilting modules, the above
results can be obtained from the generalized Brenner-Butler theorem for tilting
modules (See [13, Theorem 1.16]) and for Wakamatsu-tilting modules (See [17,
Proposition 2.5]). In this sense, the above theorems are partial generalizations
of the classical results for tilting theory and Wakamatsu-tilting theory.

Finally, using the concept of T -cograde of N with respect to semi-Wakama-
tsu-tilting modules (See [12, Definition 3.2]), we get a similar version of Auslan-
der-Bridger approximation theorem [9, Theorem 3.8]:
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Theorem 1.3. Let ATB be a semi-Wakamatsu-tilting module, M P CoprepT q
and n ě 1. If Tor-cogradeT ExtiApT,Mq ě i for any 1 ď i ď n, then there exist
a module U P A-mod and a homomorphism f : U ÑM satisfying the following
conditions:
p1q PT pAq-idAU ď n;
p2q ExtiApT, fq is bijective for any 1 ď i ď n.

As we know, tilting modules over a ring have many good properties. For ex-
ample, tilting modules induce generally recollements of triangulated categories
(see [4], [5]). If they, in addition, have smaller projective dimension or other
homological properties (see [6], [7]), then they give rise to even recollements of
derived categories of rings. In this paper, we want to obtain results analogous
to those for tilting modules.

This paper is organized as follows. In Section 3, we introduce some important
classes of modules by replacing semidualizing modules with semi-Wakamatsu-
tilting modules. For instance, we define the concepts of T -Auslander class
AT pBq, T -Bass class BT pAq, and T -flat, etc. An equivalence between AT pBq
and BT pAq is obtained. Another key point is that we give a nice property on
AT pBq and BT pAq. In Section 4, we establish an equivalence between the class
of 8-T -cotorsionfree modules and a subclass of the class of T -adstatic modules
(i.e., Theorem 4.5). Not only that, but we study many homological properties
on PT pAq-pdAM . In Section 5, we give a similar version of Auslander-Bridger
approximation theorem and obtain a nice property of relative cotranspose (See
Definition 4.1).

2. Preliminaries

Let A be an Artin R-algebra, that is, R is a commutative Artin ring and
A is an R-algebra which is finitely generated as an R-module. The category
of finitely generated left A-modules will be denoted by A-mod, respectively,
the category of finitely generated right A-modules will be denoted by mod-A.
Throughout this paper, all modules are invariably finitely generated.

Let X be a subcategory of A-mod and M be a left A-module. A homo-
morphism f : X Ñ M with X P X is called a right X -approximation (or,

X -precover) of M if the induced morphism HompX
1

, fq is surjective for all

X
1

P X . Dually, a homomorphism f : M Ñ X with X P X is called a left X -
approximation (or, X -preenvelope) of M if the induced morphism Hompf,X

1

q

is surjective for all X
1

P X . For further details, see [2, 3]. An X -resolution of
M is an exact sequence

¨ ¨ ¨ // Xn // Xn´1 // ¨ ¨ ¨ // X1 // X0 // M // 0

with Xi P X for all i ě 0. In addition, if the exact sequence is HompX ,´q-
exact, then the exact sequence is called a proper X -resolution of M . Dually, we
can define the notion of X -coresolution and proper X -coresolution. We say that
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M has X -projective dimension at most m, denoted by X -pd pMq ď m, if there
is an X -resolution of M of the form 0 Ñ Xm Ñ ¨ ¨ ¨ Ñ X1 Ñ X0 ÑM Ñ 0.

Let T be a module in A-mod. We denoted by B the endomorphism algebra
of T , thus T is an A-B bimodule in the natural manner.

We say a module AT is self-orthogonal if ExtipT, T q “ 0 for any i ě 1.
Recall that an A-module T is Wakamatsu-tilting [16] provided that

(1) EndBT – A, where B :“ EndAT and,
(2) ExtiApT, T q “ 0 “ ExtiBpT, T q “ 0 for all i ą 0.
In order to give more characteristics on n-T -cotorsionfree modules, we give

the following definition:

Definition 2.1 ([12, Definition 2.11]). A module ATB is called semi-Wakama-
tsu-tilting if B :“ EndAT and AT is self-orthogonal.

Setup: Throughout this paper, we shall fix such a semi-Wakamatsu-tilting
module ATB , and add(AT ) stands for the category consisting of all modules
isomorphic to direct summands of finite direct sums of copies of AT and Prod
(AT ) the category consisting of all modules isomorphic to direct summands of
direct products of copies of AT .

We denote the following full subcategories of A-mod:
CogenpAT q “ tM P A-mod | there is an injective morphism from M to

Tn, n P Nu,
CoprepAT q “ tM P A-mod | there is an exact sequence

0 // M
f0

// // T 0 f1

// T 1

with T i P addT for i = 0,1u,
CoapppAT q “ tM P A-mod | there is an exact sequence

0 // M
f0

// // T 0 f1

// T 1

such that Cokerpf0q P CogenpT q and f0 is an addT -preenvelope of Mu,
Dually, we can define the subcategories GenpT q, PrepT q and ApppT q.

For simplicity: We shall denote all left A modules by A-mod, all right A
modules by mod-A and the functor HompAT,´q by p´q˚. Especially, 0 Ñ LÑ
M Ñ N Ñ 0 is called HompT,´q-exact exact sequence if 0 Ñ L˚ Ñ M˚ Ñ

N˚ Ñ 0 is an exact sequence.

Lemma 2.2 ([19, Lemma 2.5(1)]). Given modules AM,ANB, AF . If BF is a
flat module, then the tensor evaluation homomorphism

HomApM,Nq bB F ÝÑ HomApM,N bB F q,

which induces an isomorphism of abelian groups

ExtiApM,Nq bB F – ExtipM,N bB F q.

For convenience, we give a dual version of [14, Lemma 9.71].
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Lemma 2.3. Given modules MA, BNA, BC. If MA is finite presented and

BC is an injective module, then there exists an isomorphism

M bB HomApN,Cq – HomBpHomApM,Nq, Cq,

which induces an isomorphism of abelian groups

TorAn pM,HomBpN,Cqq – HomBpExtnApM,Nq, Cq.

Wisbauer [18] pointed that for a module AUB , arbitrary modules BN , AM ,
there exist canonical homomorphisms µN : N ÝÑ HomApU,U bB Nq and
θM : UbBHomApU,Mq ÝÑM .

The following lemma give a characterization on θM .

Lemma 2.4 ([19, Lemma 2.1(3)]). If M P GenpUq, then the evaluation map
θM : UbBHompU,Mq ÑM is surjective. If M P ApppUq, then θM is bijective.
Conversely, if θM is bijective, then M P ApppUq. In particular, if M P addU ,
then θM is bijective.

On the other hand, here is a characterization on µN . We denote Bild :“
tN P B-mod | µN is an isomorphismu.

Lemma 2.5 ([19, Proposition 5.1]). For any A-mod AU , the functor

HomApAUB ,´q : ApppUq Ñ Bild

induces an equivalence, its inverse is U bB ´.

Remark 2.6. Following [18], we call M (resp., N) U -static (resp., U -adstatic) if
θM (resp., µN ) is an isomorphism. We denote by Stat(U) and Adst(U) the class
of all U -static modules and the class of all U -adstatic modules, respectively.

Lemma 2.7 ([18, Observation 2.4]). For any A-mod AU , the functor

HomApAUB ,´q : StatpUq Ñ AdstpUq

defines an equivalence with inverse is U bB ´.

3. Subcategories induced by semi-Wakamatsu-tilting modules

In [11], the author introduced and investigated properties of the Auslander
and Bass classes, C-flats, C-projectives, and C-injectives with respect to a
semidualizing pS,Rq-bimodule C “ SCR. In this section, we generalize these
concepts by replacing the semidualizing module C with the semi-Wakamatsu-
tilting module ATB . Furthermore, we investigate many homological properties
of them.

Definition 3.1. (a) The T -Auslander class AT pBq with respect to T consists
of all B-mod N satisfying
pA1q TorBiě1pT,Nq “ 0;

pA2q Extiě1
A pT, T bB Nq “ 0;

pA3q µN is an isomorphism.
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(b) The T -Bass class BT pAq with respect to T consists of all A-mod M
satisfying
pB1q Extiě1

A pT,Mq “ 0;

pB2q TorBiě1pT,HomApT,Mqq “ 0;
pB3q θM is an isomorphism.

It is easy to check that the following results are hold by routine verification.

Remark 3.2. p1q AT pBq (resp., BT pAq) contains Auslander classes with respect
to a semidualizing bimodule T (resp., Bass classes with respect to a semidual-
izing bimodule T ).
p2q One can directly verify that AT pBq contains all projective B-mod and

BT pAq contains all injective A-mod.
p3q Given modules N P B-mod, M P A-mod. The morphisms

T bB HomApT, T bB Nq
θpTbBNq

GGGGGGGGGGGGGBFGGGGGGGGGGGGG

T bB µN
T bB N

and

HomApT,Mq
µHomApT,Mq

GGGGGGGGGGGGGGGGBFGGGGGGGGGGGGGGGG

HomApT, θM q
HomApT, T bB HomApT,Mqq

from Definition 3.1 yield

θTbBN ¨ pT bB µN q “ IdTbBN

and

HomApT, θM q ¨ µHomApT,Mq “ IdHomApT,Mq.

In fact, there is an equivalence between AT pBq and BT pAq.

Proposition 3.3. Let ATB be a semi-Wakamatsu-tilting module. Then there
is an equivalence of categories

T bB ´ : AT pBq è BT pAq : HomApT,´q.

Proof. For any N P AT pBq, we have Extiě1
A pT, T bB Nq “ 0. Also, one can

get 0 “ TorAiě1pT,Nq – TorBiě1pT,HomApT, TbB , Nqq since µN is an isomor-
phism. Moreover, the morphism T bB µN is an isomorphism, hence θTbBN is
an isomorphism. Thus, T bB N P BT pAq.

For any M P BT pAq, by a routine verification similar to the above arguments,
we can imply HomApT,Mq P AT pBq.

Furthermore, if N P AT pBq and M P BT pAq, there are natural isomorphisms

µN : N ÝÑ HomApT, T bB Nq

and

θM : T bB HompT,Mq ÝÑM.

Then it follows that the equivalence holds. �
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Proposition 3.4. AT pBq and BT pAq are closed under finite direct sums and
direct summands.

Proof. Note that the functors Hom, Ext and Tor are additive, then we can
verify the results directly. �

We also introduce the following concepts as generalizations of C-flats, C-
projectives, and C-injectives with respect to a semidualizing bimodule C.

Definition 3.5. An A-mod is T -flat (resp., T -projective) if it has the form
T bB F for some flat (resp., projective) module BF . A B-mod is T -injective if
it has the form HomApT, Iq for some injective module AI. Set the notation:

FT pAq “ tT bB F |B F is flatu,

PT pAq “ tT bB P |B P is projectiveu,

IT pBq “ tHomApT, Iq |A I is injectiveu.

The next lemma is key to describe the relationship between these mentioned
classes.

Lemma 3.6. For modules BU , AV , the following are true:

(a) V P FT pAq if and only if V P BT pAq and HomApT, V q is flat over B.
(b) U P PT pAq if and only if U P BT pAq and HomApT,Uq is projective

over B.
(c) Y P IT pBq if and only if Y P AT pBq and T bB Y is injective over A.

Proof. (a) For the sufficiency, by the definition of BT pAq, one can get θV is an
isomorphism. Thus, V P FT pAq by the assumption.

For the necessity, firstly, by Lemma 2.2, we have:

Extiě1
A pT, T bB F q – Extiě1

A pT, T q bB F “ 0,

where F is finitely generated flat left B-mod. Thus, the module V “ T bB F
satisfies condition pB1q in Definition 3.1(2). Next, one can get that HomApT, V q
is flat B-mod since

HomApT, V q “ HomApT, T bB F q

– HomApT, T bB plim
Ñ
Piqq

– lim
Ñ

HomApT, T bB Piqq

– lim
Ñ
pHomApT, Tiqq

– lim
Ñ
Pi

– BF,

(3.1)

where Pi is finitely generated projective left B-mod and BF is flat. Hence, the
condition pB2q is automatically meet. Moreover, the above arguments imply
the following result hold:

T bB HomApT, T bB F q – T bB F.(3.2)
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Thus, the module V also satisfies condition pB3q. Consequently, the equiva-
lence holds.

(b) Compared to (a), the proof of (b) requires only minor adjustments. We
omit it.

(c) For the sufficiency, by the definition of AT pBq, one can get µY is an
isomorphism. Thus, V P IT pBq by the assumption.

For the necessity, one may assume Y “ HomApT, Iq. By Remark 3.2(1), we
know that for any injective module I, θI is an isomorphism. That is , T bB Y
is injective over A. So one can easily observe that Extiě1

A pT, T bB Y q “ 0.
Hence µY is an isomorphism. Moreover, Y – HomApT, T bB Y q. By Lemma
2.3, TorB

iě1pT, Y q “ TorB
iě1pT,HomApT, Iqq – HomApExtiě1

A pT, T q, Iq “ 0,
as desired. �

The next two propositions show basic properties on FT pAq, PT pAq and
IT pBq.

Proposition 3.7. p1q PT pAq “ add AT .
p2q IT pBq “ Prod T`, where T` “ HomApT,Qq with AQ an injective co-

generator.

Proof. p1q It is clear that PT pAq Ď addT . On the contrary, for the module
T pkq, we can obtain that

T bB HomApT, T
pkqq – T bB HomApT, T q

pkq

– pT bB HomApT, T qq
pkq

– T pkq.

(3.3)

That is, θT pkq is an isomorphism (or, T pkq P ApppT q, by Lemma 2.4, θT pkq is
an isomorphism). Now, suppose that AM P addT and M ‘N “ T pkq for some
N P A-mod. Then there is a split exact sequence 0 Ñ M Ñ T pkq Ñ N Ñ 0,
which induces the following commutative diagram with exact rows:

0 // T bB M˚
//

θM

��

T bB T
pkq
˚

//

θ
T pkq

��

T bB N˚ //

θN

��

0

0 // M // T pkq // N // 0.

By the five lemma, θM is monic, hence θN is monic, and so θM is an iso-
morphism by the five lemma again. Notice that HomApT,Mq is a projective
left A-mod since HomApT,Mq ‘ HomApT,Nq – HomApT, T

pkqq – Bpkq. So

AM – T bB M˚ P addT .
p2q The proof is dual to that for (1). For the convenience of readers, we give

a complete proof. Firstly, It is clear that IT pBq Ď Prod T`. Conversely, for
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the module pT`qJ , we can obtain that

HomApT, T bB pT
`qJq – HomApT, pT bB T

`qJq

– pHomApT, T bB T
`qqJ

– pT`qJ .

(3.4)

That is, µpT`qJ is an isomorphism. Now, suppose that BM P Prod (T`qJ and

M ‘ N “ pT`qJ for some N P B-mod. Then there is a split exact sequence
0 ÑM Ñ pT`qJ Ñ N Ñ 0, which induces the following commutative diagram
with exact rows:

0 // M //

µM

��

pT`qJ //

µ
pT`qJ

��

N //

µN

��

0

0 // pT bB Mq˚ // pT bB pT`qJq˚ // pT bB Nq˚ // 0.

Using the same technique in p1q, we know that µM is an isomorphism. Notice
that TbBM is an injective A-mod since pTbBMq‘pTbBNq – TbB pT

`qJ –

pT bB pT
`qqJ – QJ . Thus, BM – HomApT, T bB Mq P Prod T`. �

Proposition 3.8. The classes FT pAq, PT pAq and IT pBq are closed under
extensions.

Proof. We only to show the proof for PT pAq, since the proof of FT pAq is similar
and the proof of IT pBq is dual. Assume that 0 Ñ L Ñ M Ñ N Ñ 0 is an
exact sequence of A-mod, and L,N P PT pAq. Let L “ T bB P

1, where P 1 is a
projective B-mod. By Lemma 2.2, we have Ext1

ApT, Lq “ Ext1
ApT, T bB P

1q “

0. Then we can obtain the following commutative diagram:

0 // T bB L˚ //

θL
��

T bB M˚
//

θM
��

T bB N˚ //

θN
��

0

0 // L // M // N // 0.

Lemma 3.6 implies θL, θN are isomorphisms and the five lemma forces θM to
be an isomorphism as well. Then by the definition of the functors Ext,Tor, we
obtain M P BT pAq. Moreover, L˚, N˚ are projective modules by Lemma 3.6.
Thus, M˚ is a projective module. Consequently, M P PT pAq by Lemma 3.6
again. �

We conclude this section by giving a beautiful characterization on AT pBq,
BT pAq. In order to give a concise proof, we show the next result.

Lemma 3.9. For any module M P B-mod, if Extiě1
A pT, T bB Mq “ 0, then

Extiě1
A pT bB P, T bB Mq “ 0

for all projective B-mod P .
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Proof. Let I‚ be an injective resolution of the A-mod T bB M and P be an
arbitrary projective B-mod. Hence, there are isomorphisms:

Extiě1
A pT bB P, T bB Mq – H´iHomBpT bB P, I

‚q

– H´iHomBpP, HomApT, I
‚qq

– HomBpP, H´iHomApT, I
‚qq

– HomBpP, Extiě1
A pT, T bB Mqq

“ 0.

(3.5)

By the assumption, the desired conclusion follows. �

Theorem 3.10. Let U, V P B-mod, S,W P A-mod, and S1 P mod-A.
p1q If U P AT pBq and TorBiě1pT, V q “ 0, then

Extiě1
B pV, Uq – Extiě1

A pT bB V, T bB Uq.

p2q If S P BT pAq and Extiě1
A pT, W q “ 0, then

Extiě1
A pS, W q – Extiě1

B pHomApT, Sq, HomApT, W qq.

p3q If S P AT pBq and TorAiě1pS
1, T q “ 0, then

TorAiě1pS
1, Sq – TorAiě1pS

1 bA T, HomApT, Sqq.

Moreover, these isomorphisms are natural isomorphisms of abelian groups.

Proof. p1q We show the proof by induction on i. For the case i “ 0, the fact
that U P AT pBq and the Hom-tensor adjointness follows that

HomBpV, Uq – HomBpV, HomApT, T bB Uqq

– HomApT bB V, T bB Uq.
(3.6)

Next, we suppose that i ą 0 and the conclusion hold for j ă i. That is, there
are isomorphisms

ExtjBpL
1, Lq – ExtjApT bB L

1, T bB Lq,

where L P AT pBq and TorBiě1pT, L
1q “ 0. Now, we consider U P AT pBq and

TorBiě1pT, V q “ 0. Hence, there is an exact sequence

pη21q 0 Ñ V 1 Ñ P 1 Ñ V Ñ 0,

where P 1 is a projective B-mod. Obviously, TorBiě1pT, V
1q “ 0 and the sequence

pT bB η21q 0 Ñ T bB V
1 Ñ T bB P

1 Ñ T bB V Ñ 0

is exact. Now, applying the functor HomBp´, Uq to η21 (resp., HomBp´, T bB
Uq to (TbB η21)), we can obtain the following commutative diagram with exact
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columns:

...

��

...

��
Exti´1

B pP 1, Uq

��

– // Exti´1
A pT bB P

1, T bB Uq

��
Exti´1

B pV 1, Uq
– //

��

Exti´1
A pT bB V

1, T bB Uq

��
ExtiBpV,Uq

��

// ExtiApT bB V, T bB Uq

��
ExtiBpP

1, Uq ExtiApT bB P
1, T bB Uq

0 0.

(3.7)

The two isomorphisms can be obtained by the induction hypothesis. On the
other hand, U P AT pBq, and hence Extiě1

A pT, T bB Mq “ 0. Then the right
zero follows from Lemma 3.9. Hence, there exists a unique isomorphism

ExtiBpV,Uq – ExtiApT bB V, T bB Uq,

which makes the induced diagram commutative. Also, it is not difficult to
verify the isomorphism is natural in U and V . The similar statements p2q, p3q
are proved accordingly. �

4. Equivalence and relative homological dimensions

We firstly recall the concept of n-T -cotorsionfree modules [12]. Then, we
prove that there is an equivalence between 8-T -cotorsionfree modules and a
subclass of the class of T -adstatic modules. Some important results on relative
homological dimension are obtained.

Definition 4.1. Let M be a left A-module in CoprepAT q, that is, there is an
exact sequence

pρ22q 0 // M
f0

// // T 0 f1

// T 1.

Applying HompAT,´q to pρ22q, we call cΣT pMq :“ Coker f1
˚ the relative co-

transpose of M with respect to T , or T -cotranspose of M . Moreover, there
exists an exact sequence

0 // pcoΩiT pMqq˚ // T i˚ // pcoΩi`1
T pMqq˚ // 0,
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where M :“ coΩ0
T pMq, coΩ

i`1
T pMq “ Cokerf i, and i “ 0, 1.

Definition 4.2 ([12, Definition 2.4]). Let M be a finitely generated left A-

module in CoprepAT q. Then M is called n-T -cotorsionfree if TorBi pT, cΣT pMqq
“ 0 for all 1 ď i ď n.

If TorBi pT, cΣT pMqq “ 0 for all i ě 1, then M is called 8-T-cotorsionfree.
The class of8-T-cotorsionfree modules is denoted by 4pAq. Particularly, every
module in A-mod is 0-T-cotorsionfree.

Thought out this section, we always suppose that 4pAq Ď CoprepAT q (resp.,

AT
K Ď CoprepAT qq.

Remark 4.3. By [12, Corollary 2.6], a module M is 2-T -cotorsionfree if and
only if M P Stat(T ).

We denote that S “ tM P B-mod | Extiě1
B pM,T`q “ 0u and T “ AdstpT qX

S, where p´q` “ HomZp´,Q{Zq with Z the additive group of integers and Q
the additive group of rational numbers.

Proposition 4.4. p1q If pdAT ă 8, then 4pAq Ď AT
K.

p2q If pdBopT ă 8, then AT
K Ď 4pAq.

Proof. p1q Let M P 4pAq. Then by [12, Theorem 2.9], there exists a HomApAT ,
´q-exact exact sequence

¨ ¨ ¨ // Tn // ¨ ¨ ¨ // T 1 // T 0 // M // 0,

with all T i P addT . Set Ki “ ImpT i Ñ T i´1q for any i ě 1. We may
assume pdAT “ n ă 8 by assumption. Thus, one can obtain ExtiBpT,Mq –
Exti`nA pT,Knq “ 0 for any i ě 1 by dimension shifting. Hence, M P AT

K.
p2q Let M P AT

K and pdBopT “ n ă 8. Then for i “ 0, 1, we consider the
following B-mod exact sequence

0 // pcoΩiT pMqq˚ // T i˚ // pcoΩi`1
T pMqq˚ // 0.

By [12, Lemma 2.2], we have TorBn pTB ,HompT, T iqq “ 0, n ě 1. Then there is
an isomorphism

TorBj pT, coΩ
i
T pMq˚q – TorBj`npT, coΩ

i`n
T pMq˚q.

In particular, TorB1 pT, coΩ
2
T pMq˚q “ 0. Hence we have the following diagram

with exact rows:

0 // T bB pcoΩ1
T pMqq

θ
pcoΩ1

T
pMqq

��

// T bB T 1
˚

θT1

��
0 // coΩ1

T pMq
// T 1.

Because θT 1 is an isomorphism by Lemma 2.4, θcoΩ1
T pMq

is a monomorphism.

Thus, coΩ1
T pMq is 2-T -cotorsionfree by [12, Corollary 2.6(2)]. On the other
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hand, TorB1 pT, coΩ
1
T pMq˚q “ 0 by the argument, we also can get the following

commutative diagram with exact rows:

0 // T bB M˚
//

θM

��

T bB T
0
˚

//

θT0

��

T bB coΩ
1
T pMq˚

//

θ
coΩ1

T
pMq

��

0

0 // M // T 0 // coΩ1
T pMq

// 0.

Because θT 0 is an isomorphism by Lemma 2.4, and by the snake lemma we
know that θM is also an isomorphism. That is, M is 2-T -cotorsionfree. So by
[12, Corollary 2.10], there exists an exact sequence 0 Ñ K1 Ñ T 01 Ñ M Ñ 0

with T 01 P addT and Ext1
ApT,K1q “ 0. Observe that K1 P AT

K for M P AT
K,

then repeat the same process for K1, we obtain an A-mod exact sequence
0 Ñ K2 Ñ T 11 Ñ K1 with T 11 P addT and Ext1

ApT,K2q “ 0. Continue the
discussion, we finally get a proper addT -resolution

¨ ¨ ¨ // Tn
1 // ¨ ¨ ¨ // T 11 // T 01 // M // 0.

Consequently, M P 4pAq. �

The next theorems are our main results in this section:

Theorem 4.5. Let ATB be a semi-Wakamatsu-tilting module. There is an
equivalence of categories p´q˚ : 4pAq è T : T bB ´.

Proof. According to Lemma 2.7, the category of all 2-T -cotorsionfree modules
and AdstpT q can form an equivalence, which is induced by the functors p´q˚
and T bB ´. Hence, we only need to show that p´q˚ (resp., T bB ´q maps
4pAq (resp., T ) to T (resp., 4pAq).

Let M P 4pAq. Then by Lemma 2.7, we have M˚ P AdstpT q. Moreover, by
[12, Theorem 2.9], there exists a proper addAT -resolution

¨ ¨ ¨ // Tn // ¨ ¨ ¨ // T 1 // T 0 // M // 0

of M P A-mod. Thus, we can also get an exact sequence

¨ ¨ ¨ // pTnq˚ // ¨ ¨ ¨ // pT 1q˚ // pT 0q˚ // M˚
// 0

in B-mod. Applying the functor T bB ´ to this exact sequence, then we easily
imply TorBiě1pT,M˚q “ 0 by dimension shifting and [12, Lemma 2.2]. Note
that there is an isomorphism

Extiě1
B pM˚, T

`q – rTorBiě1pT,M˚qs
` “ 0.

So M˚ P KerExtiě1
B p´, T`q and M˚ P T .

On the other hand, let N P T . Then µN is an isomorphism. Notice that
there also exist isomorphisms

rTorBiě1pT, pT bB Nq˚qs
` – rTorBiě1pT,Nqs

` – Extiě1
B pN,T`q “ 0



794 D. J. LIU AND J. Q. WEI

and TorBiě1pT, pT bB Nq˚q “ 0. Additionally, T bB N is 2-T -cotorsionfree
by Lemma 2.7. Thus, we can obtain that T bB N P 4pAq by [12, Corollary
2.6(3)]. �

For a subclass C Ď A-mod, we denote idAC :“ suptidAC |C P Cu. The fol-
lowing theorem establishes the relation between the relative homological dimen-
sions of a module AM and the corresponding standard homological dimensions
of M˚.

Theorem 4.6. p1q pdBM˚ ď PT pAq-pdAM for any M P A-mod; the equality
holds if M P 4pAq.
p2q idAT bB N ď IT pBq-idBN for any N P B-mod; the equality holds if

N P AT pBq.
p3q suptPT -pdAM |M P 4pAq with PT -pdAM ă 8u ď idAPT pAq.
p4q suptFT -pdAM |M P 4pAq with FT -pdAM ă 8u ď idAFT pAq.

Proof. p1q Let M P A-mod with PT pAq-pdAM “ n ă 8. Then there exists an
exact sequence

0 // Tn // ¨ ¨ ¨ // T 1 // T 0 // M // 0

with all T i P addT by Proposition 3.7. Note that all the T i˚ are projective
B-mod, and T is a semi-Wakamatsu-tilting module, we can get the following
exact sequence

0 // Tn˚ // ¨ ¨ ¨ // T 1
˚

// T 0
˚

// M˚
// 0

whenever applying the functor p´q˚. Thus, pdBM˚ ď n.
Conversely, assume that M P 4pAq and pdBM˚ “ n ă 8. Then there is an

exact sequence

0 // Pn // ¨ ¨ ¨ // P 1 // P 0 // M˚
// 0

with all P i projective. By [12, Corollary 2.6(3)], we can obtain the following
exact sequence

0 ÝÑ T bB P
n ÝÑ ¨ ¨ ¨ ÝÑ T bB P

1 ÝÑ T bB P
0 ÝÑ T bB M˚p–Mq ÝÑ 0.

Hence, PT pAq-pdAM ď n.
p2q Let Q be an injective cogenerator. By the assumption, there exists an

exact sequence

0 ÝÑ N ÝÑ E0 ÝÑ E1 ÝÑ ¨ ¨ ¨ ÝÑ En ÝÑ 0

with all Ei P Prod(HomApT,Qq) by Proposition 3.7. It follows from Lemma

2.3 that TorAjě1pT,E
iq “ 0 for any 0 ď i ď n. Applying the functor T bB ´ to

the above exact sequence, we can obtain the following exact sequence

0 ÝÑ T bB N ÝÑ T bB E
0 ÝÑ T bB E

1 ÝÑ ¨ ¨ ¨ ÝÑ T bB E
n ÝÑ 0.

Then by Remark 3.2(1), IT pBq-idBN .
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Conversely, suppose N P AT pBq, then we have TorBiě1pT,Nq “ 0 and

Extiě1
A pT, T bB Nq “ 0. If IT pBq-idBN “ n ă 8, i.e., there is an exact

sequence

0 // T bB N // I0 // I1 // ¨ ¨ ¨ // In // 0

with all Ei injective. Hence, it is not hard to get the following exact sequence

0 ÝÑ pT bB Nq˚p– Nq ÝÑ pI0q˚ ÝÑ pI1q˚ ÝÑ ¨ ¨ ¨ ÝÑ pInq˚ ÝÑ 0

with all pIiq˚ P IT pBq. Thus, IT pBq-idBN ď n.
p3q We may assume that idAPT pAq “ n ă 8. Let M P 4pAq with PT -

pdAM “ m ă 8. By (1), pdBM˚ “ m, and we can obtain the exact sequence

0 ÝÑ T bB P
m ÝÑ ¨ ¨ ¨ ÝÑ T bB P

1 ÝÑ T bB P
0 ÝÑ T bBM˚p–Mq ÝÑ 0.

Notice that there is an isomorphism Extiě1
A pTbBP

k, TbBP
jq “ 0. We suppose

m ą n. Then we can obtain Ext1
ApK,T bB Pmq – ExtmA pM,T bB Pmq “ 0

because idAPT pAq “ n, where K “ CokerpT bB P
m Ñ T bB P

m´1q. Thus,
the sequence 0 Ñ T bB Pm Ñ T bB Pm´1 Ñ K Ñ splits and K P PT pAq,
which is a contradiction. Hence, m ď n.
p4q It is similar to the proof of p3q, we omit it. �

To conclude this section, we give the following application, which as a cri-
terion on PT pAq-pdAM .

Proposition 4.7. If PT pAq-pdAM ă 8, then PT pAq-pdAM “ supti ě 0 |
ExtiApM,T q ‰ 0u.

Proof. By the above argument in Theorem 4.6(1), we set Kn´1 “ Coker(Tn Ñ
Tn´1). It is clear that ExtiApM,T q “ 0 for all i ě n ` 1. Assume that
ExtnApM,T q “ 0. Then Ext1

ApK
n´1, Tnq – ExtnApM,Tnq “ 0. It follows that

the exact sequence 0 Ñ Tn Ñ Tn´1 Ñ Kn´1 Ñ 0 splits. Hence, it yields
that Kn´1 P PT pAq and PT pAq-pdAM ď n ´ 1, which is a contradiction. As
desired. �

5. An analogous Auslander-Bridger approximation’s theorem

In the following parts, we are committed to getting a similar version of the
Auslander-Bridger approximation theorem (See [9, Theorem 3.8]) and devote
ourself to give an application. In the end, we also obtain a nice property of
relative cotranspose cΣT pMq (See Definition 4.1).

For an integer n ě 0, we have defined the concept of T -cograde of N with
respect to T , refer to [12]. In order to better express the meaning of the first T
in the notation ‘T-cogradeTN ’, in this paper, we change the original notation
‘T-cogradeTN ’ into ‘Tor-cogradeTN ’.

Definition 5.1. Let N be in B-mod and let n ě 0. The Tor-cograde of N
with respect to T , denoted by Tor-cogradeTN , is defined to be the integer
n “ infti |ToripT,Nq ‰ 0u.
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Dually, we give the following definition:

Definition 5.2. Let M be in A-mod and let n ě 0. The Ext-cograde of M
with respect to T , denoted by Ext-cogradeTM, is defined to be the integer
n “ infti |ExtipT,Mq ‰ 0u.

The next theorem is our main result in this section, which can be regard
as a similar version of the Auslander-Bridger approximation theorem (See [9,
Theorem 3.8]).

Theorem 5.3. Let ATB be a semi-Wakamatsu-tilting module, M P CoprepT q
and n ě 1. If Tor-cogradeT ExtiApT,Mq ě i for any 1 ď i ď n, then there exist
a module U P A-mod and a homomorphism f : U ÑM satisfying the following
conditions:
p1q PT pAq-idAU ď n;
p2q ExtiApT, fq is bijective for any 1 ď i ď n.

Proof. The proof is by induction on n. Firstly, let n “ 1 and

P 1 f1 // P 0 // Ext1
ApT,Mq // 0,

be a projective presentation of ExtiApT,Mq. Hence, we can obtain the exact
sequence

0 // U // T bB P 1 1bBf1 // T bB P 0 // T bB Ext1
ApT,Mq // 0

in B-mod, with T bB P 1, T bB P 0 P PT pAq. Thus, the fact that T bB
Ext1

ApT,Mq “ 0 by assumption follows that PT pAq-idAU ď 1.
On the other hand, note that P 1, P 0 P B-mod are projective, we have the

following commutative diagram with exact rows:

P 1

g1

�

f1 // P 0

g0

�

δ1 // Ext1
ApT,Mq // 0

pT 0q˚ // coΩ1
T pMq˚

δ // Ext1
ApT,Mq // 0,

where g1, g0 are induced homomorphisms.
Then we can construct homomorphisms h1, h0 to ensure the following com-

mutative diagram with exact rows:

0 // U

f

�

// T bB P 1

h1

��

1TbBf
1

// T bB P 0 //

h0

��

0

0 // M // T 0 δ // coΩ1
T pMq

// 0,

where f is a induced homomorphism and h0 “ θcoΩ1
T pMq

‚ p1T bB g0q, h1 “

θT 0 ‚ p1T bB g1q.
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Applying the functor p´q˚ to the above diagram, we can obtain the following
commutative diagram with exact rows:

pT bB P
1q˚

h1
˚

��

p1TbBf
1
q˚// pT bB P 0q˚

h0
˚

��

δ2 // Ext1
ApT,Uq //

Ext1
ApT,fq

��

0

pT 0q˚ // coΩ1
T pMq˚

δ // Ext1
ApT,Mq // 0.

Notice that µP 0 , µP 1 are isomorphisms since P 1, P 0 P B-mod are projec-
tive. By the naturalness of the functor µ, we know that p1T bB g

0q˚ ‚ µP 0 “

µcoΩ1
T pMq˚

‚ g0. Hence, one can obtain that

ph0q˚ ‚ µP 0 “ pθcoΩ1
T pMq

‚ p1T bB g
0qq˚ ‚ µP 0

“ pθcoΩ1
T pMq

q˚ ‚ p1T bB g
0q˚ ‚ µP 0

“ pθcoΩ1
T pMq

q˚ ‚ µcoΩ1
T pMq˚

‚ g0

“ 1coΩ1
T pMq˚

‚ g0

“ g0.

(5.1)

Then, it is easy to obtain the fact that

δ1 ‚ pµP 0q´1 “ δ ‚ g0 ‚ pµP 0q´1

“ δ ‚ ph0q˚ ‚ µP 0 ‚ pµP 0q´1

“ δ ‚ ph0q˚

“ Ext1
ApT, fq ‚ δ

2.

(5.2)

In other words, we can get the following commutative diagram with exact
rows:

pT bB P
1q˚

pµP1 q
´1

��

p1TbBf
1
q˚// pT bB P 0q˚

pµP0 q
´1

��

δ2 // Ext1
ApT,Uq //

Ext1
ApT,fq

��

0

P 1 // P 0 δ // Ext1
ApT,Mq // 0.

Thus, Ext1
ApT, fq is bijective by the five lemma.

Now, we assume the result holds for i “ n ´ 1 ě 2. That is, there exist a
module H P A-mod and a homomorphism h1 : H ÑM satisfying the following
conditions:
p1q PT pAq-idAH ď n´ 1;
p2q ExtiApT, h

1q is bijective for any 1 ď i ď n ´ 1. Then by dimension
shifting, also note that T is a semi-Wakamatsu-tilting module, there exists a
HomAp´,PT pAqq-exact exact sequence

0 // H
g1 // W // X // 0,
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where W P PT pAq. So we can construct the following commutative diagram
with exact rows and columns:

0

��

0

��
M

��

M

��
0 // H

p
f 1

g1q // M ‘W //

��

L //

��

0

0 // H
g1 // W

��

// X

��

// 0

0 0,

where the middle column is split, the HomAp´,PT pAqq-exact middle row can
implies the following exact sequence

0 // H˚ // pM ‘W q˚ // L˚ // 0.

Moreover, the induction of hypothesis follows that

p˚23q Ext1ďiďn´1
A pT, Lq “ 0, ExtnApT,Mq – ExtnApT, Lq.

Now, we take a projective resolution of ExtnApT,Mq:

Pn // ¨ ¨ ¨ // P 1 // P 0 // ExtnApT,Mq // 0.

By assumption, Tor-cogradeT ExtnApT,Mq ě n, so we get the exact sequence:

0 // N // T bB Pn // ¨ ¨ ¨ // T bB P 1 // T bB P 0 // 0.

Hence, PT pAq-idAN ď n. Moreover, we applying the functor p´q˚ to the
above exact sequence, we get another exact sequence:

0 ÝÑ N˚ ÝÑ pT bB P
nq˚ ÝÑ ¨ ¨ ¨ ÝÑ pT bB P

1q˚ ÝÑ pT bB P
0q˚ ÝÑ 0.

Note that µP i are isomorphisms for all 1 ď i ď n, we can easily get that

p˚24q Ext1ďiďn´1
A pT,Nq “ 0, ExtnApT,Nq – ExtnApT,Mq.

By p˚23q, p˚24q We give an observation:

p˚25q ExtnApT,Nq – ExtnApT, Lq.

Indeed, let 0 Ñ L Ñ I0 Ñ ¨ ¨ ¨ Ñ In´2 Ñ In´1 Ñ K Ñ 0 be induced by
an injective resolution of L. Since Ext1ďiďn´1

A pT, Lq “ 0, one can obtain the
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following exact sequence:

Pn˚

��

// ¨ ¨ ¨ // P 1 //

��

P 0 //

��

Ext1
ApT,Mq // 0

I0
˚

// ¨ ¨ ¨ // In´1
˚

// K˚ // Ext1
ApT, Lq // 0,

where the vertical morphisms are induced by the projective modules.
By assumption, we applying the functor T bB ´:

0 // N

��

// T bB Pn

��

// ¨ ¨ ¨ // T bB P 1 //

��

T bB P
0 //

��

0

0 // L // I0 // ¨ ¨ ¨ // In´1 // K // 0,

comparing the above two diagrams, we can easily obtain the observation p˚25q.
By the above arguments, there exist two exact sequence: 0 Ñ N Ñ L ‘

W 1 Ñ N 1 Ñ 0 and HomAp´,PT pAqq-exact exact sequence 0 Ñ H Ñ M ‘

W ‘W 1 Ñ L‘W 1 Ñ 0, where W 1 “ T bB P
n. Notice the following pullback

diagram:

0

��

0

��
0 // H // U //

��

N //

��

0

0 // H // M ‘ L‘W

��

// L‘W 1

��

// 0

N 1

��

N 1

��
0 0.

Then by the Horse Lemma, we finally get PT pAq-idAU ď n because PT pAq-
idAH ď n ´ 1, PT pAq-idAN ď n and the first row in the above diagram is a
HomAp´,PT pAqq-exact exact sequence.

In addition, by p˚23q, p˚24q and ExtnApT,PT pAqq “ 0 , it is not hard for us
to get the following commutative diagram:

ExtnApT,Hq // ExtnApT,Uq

��

// ExtnApT,Nq //

��

0

0 // ExtnApT,Hq // ExtnApT,M ‘W ‘W 1q – ExtnApT,Mq // ExtnApT, L‘W q // 0.

Consequently, we obtain ExtnApT,Mq – ExtnApT,Uq. �
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The following result is an application of Theorem 5.3:

Corollary 5.4. Let M P CoprepAT q, and let n ě 1. If Tor-cogradeT ExtiApT ,
Mq ě i` 1 for any 0 ď i ď n, then Ext-cogradeT M ě n` 1.

Proof. We proceed by induction on n. If n “ 0, and pT bB Mq˚ “ 0. By
Remark 3.2(2), µM˚ is a split monomorphism and M˚ “ 0.

Secondly, we suppose n ě 1. By the assumption, we have that Ext-cogradeT
M ě n and Ext0ďiďn´1

A pT,Mq “ 0. By Theorem 5.3, there exist a module
U P A-mod and a homomorphism f : U ÑM P A-mod satisfying the following
conditions:
p1q PT pAq-idAU ď n;
p2q ExtiApT, fq is bijective for any 1 ď i ď n. Then there exists an exact

sequence:

0 // U˚ // P 0
˚ ¨ ¨ ¨

//// Pn´1
˚

// Pn˚ // ExtnApT,Uq // 0,

where P i P PT pAq for all 0 ď i ď n. Obviously, ExtnApT,Mq – ExtnApT,Uq.
Hence, by the assumption again, we obtain Tor-cogradeT ExtiApT,Uq ě n` 1.

Thus, there exists the following commutative diagram with exact rows:

T bB U˚

θU

��

// T bB P 0
˚

θP0

��

// ¨ ¨ ¨ // T bB P 0
˚

//

θPn´1

��

T bB P
0
˚

//

θPn

��

0

0 // U // P 0 // ¨ ¨ ¨ // Pn´1 // Pn // 0.

By Remark 3.2(2), θP i are isomorphisms for any 1 ď i ď n. Hence, θU is
epic. By the naturality of θ, we have the following commutative diagram:

pT bB Uq˚

θU

��

// pT bB Mq˚

θM

��
U

f // M.

The fact pT bB Mq˚ “ 0 follows that f ‚ θU “ 0. Thus, f “ 0, and
ExtiApT, fq “ 0. Consequently, ExtiApT,Mq “ 0 and Ext-cogradeT M ě n `
1. �

The ending section of this paper presents the following interesting results,
which can obtain a nice property of cΣT pMq.

Proposition 5.5. If there exists an exact sequence

p˚26q V1
g // V0

// N // 0

which satisfy the following conditions:
p1q µV0

, µV1
are isomorphisms.
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p2q Ext1
ApT, T bB V0q “ 0 “ Ext1

ApT, T bB V1q “ 0 “ Ext2
ApT, T bB V1q.

Then there exists an exact sequence

0 // Ext1
ApT, Lq // N

µN// pT bB Nq˚ // Ext2
ApT, Lq // 0,

where L “ Kerp1T bB gq.

Proof. By applying the functor T bB´ to p˚26q, one can get an exact sequence:

0 // L // T bB V1
1TbBg// T bB V0

// T bB N // 0.

Then it is easy to obtain the following commutative diagram:

0 // Img //

h

��

V0
1Tbπ

1

//

µV0

��

N //

µN

��

0

0 // pImp1T bB gqq˚ // pT bB V0q˚
π // pT bB Nq˚ // Ext1

ApT, Imp1T bB gq // 0,

where h is a induced morphism.
Hence, by the snake lemma, we have CokerµN – Ext1

ApT, Imp1T bB gq and
KerµN – Cokerh. The rest proof can be obtained by the dually proof in
[12, Theorem 2.3], so we omit it. �

Corollary 5.6. Let M P CoprepT q be in A-mod. Then there exists an exact
sequence

0 Ñ Ext1
ApT,Mq ÝÑ cΣT pMq

µcΣT pMq

ÝÑ pT bB cΣT pMqq˚ ÝÑ Ext2
ApT,Mq Ñ 0.

Proof. By the definition of cΣT pMq, there is an exact sequence

0 // M˚
// T 0
˚

// T 1
˚

// cΣT pMq // 0.

Note that µT 0
˚
, µT 1

˚
are isomorphisms, and Extiě1

A pT, T bB T 1
˚q “ 0 “

Extiě1
A pT, T bB T

0
˚q.

Then the result follows from Corollary 5.4. �
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