HOMOLOGICAL PROPERTIES OF SEMI-WAKAMATSU-TILTING MODULES

Dajun Liu and Jiaqun Wei

Abstract

For a fixed semi-Wakamatsu-tilting module ${ }_{A} T$, we generalize the concepts of Auslander class, Bass class, and investigate many homological properties of such classes. Moreover, we establish an equivalence between the class of $\infty-T$-cotorsionfree modules and a subclass of the class of T-adstatic modules. Finally, a similar version of AuslanderBridger approximation theorem and a nice property of relative cotranspose are obtained.

1. Introduction

It is generally known that Auslander-Bridge transpose [1] plays an important role in the classical Auslander-Reiten theory. Auslander and Bridge showed how Auslander-Bridge transpose can be used to investigate n-torsionfree modules over two-sided rings. A faithfully balanced self-orthogonal bimodule is called a generalized tilting bimodule by Wakamatsu [16]. Following [10], generalized tilting bimodules are Wakamatsu-tilting modules. Clearly, tilting modules are Wakamatsu-tilting modules and Wakamatsu-tilting modules are generalized from tilting modules without the restriction of projective dimension [13]. A semidualizing bimodule defined in [11] is also a Wakamatsu-tilting module.

Dibaei and Sadeghi [8] introduced the C-transpose $\operatorname{Tr}_{C} M$ for a module M respect to a semidualizing module ${ }_{R} C$ (See [8, Definition 1.3]). Dually, Tang and Huang [15] introduced and demonstrated the cotranspose of modules with respect to a semidualizing bimodule ${ }_{R} C_{S}$. Moreover, they introduced $n-C$ cotorsionfree modules and verified that n - C-cotorsionfree modules have many dual properties of n-torsionfree modules.

[^0]Xi [19] gave the notion of relative transpose of a given module M. This inspires us in [12] to introduce the dual concept, n - T-cotorsionfree modules (See Definition 4.2) defined by the above dual conception relative cotranspose (See Definition 4.1). Based on these previous work, and in order to further study ∞ - T-cotorsionfree modules (See Definition 4.2), we replace semidualizing modules with semi-Wakamatsu-tilting modules ${ }_{A} T_{B}$ to redefine some conceptions of classes of modules (See [11]). In particular, we define T-Auslander class $\mathcal{A}_{T}(B), T$-Bass class $\mathcal{B}_{T}(A)$ with respect to ${ }_{A} T_{B}$ (See Definition 3.1), and T projective $\mathcal{P}_{T}(A)$ (See Definition 3.5). It turn out that many important results on Auslender and Bass classes with respect to a semidualizing module are still true in our more general setting.

We mainly prove the following conclusions:
Theorem 1.1. Let $U, V \in B$-mod, $S, W \in A$-mod, and $S^{\prime} \in \bmod -A$.
(1) If $U \in \mathcal{A}_{T}(B)$ and $\operatorname{Tor}_{i \geqslant 1}^{B}(T, V)=0$, then

$$
\operatorname{Ext}_{B}^{i>1}(V, U) \cong \operatorname{Ext}_{A}^{i \geqslant 1}\left(T \otimes_{B} V, T \otimes_{B} U\right)
$$

(2) If $S \in \mathcal{B}_{T}(A)$ and $\operatorname{Ext}_{A}^{i \geq 1}(T, W)=0$, then

$$
\operatorname{Ext}_{A}^{i \geqslant 1}(S, W) \cong \operatorname{Ext}_{B}^{i \geqslant 1}\left(\operatorname{Hom}_{A}(T, S), \operatorname{Hom}_{A}(T, W)\right)
$$

(3) If $S \in \mathcal{A}_{T}(B)$ and $\operatorname{Tor}_{i \geqslant 1}^{A}\left(S^{\prime}, T\right)=0$, then

$$
\operatorname{Tor}_{i \geqslant 1}^{A}\left(S^{\prime}, S\right) \cong \operatorname{Tor}_{i \geqslant 1}^{A}\left(S^{\prime} \otimes_{A} T, \operatorname{Hom}_{A}(T, S)\right)
$$

Moreover, these isomorphisms are natural isomorphisms of abelian groups.
Indeed, the above theorem is an essential characterization on modules in $\mathcal{A}_{T}(B), \mathcal{B}_{T}(A)$.

We denote that $\mathcal{S}=\left\{M \in B-\bmod \mid \operatorname{Ext}_{B}^{i \geqslant 1}\left(M, T^{+}\right)=0\right\}$ and $\mathcal{T}=\operatorname{Adst}(T) \cap$ \mathcal{S} (See Remark 2.6), where $(-)^{+}=\operatorname{Hom}_{\mathbf{Z}}(-, \mathbf{Q} / \mathbf{Z})$ with \mathbf{Z} the additive group of integers and \mathbf{Q} the additive group of rational numbers. The class of ∞ -T-cotorsionfree modules is denoted by $\triangle(A)$. If $\triangle(A) \subseteq \operatorname{Copre}\left({ }_{A} T\right)$ (resp., $\left.{ }_{A} T^{\perp} \subseteq \operatorname{Copre}\left({ }_{A} T\right)\right)$, we have:

Theorem 1.2. Let ${ }_{A} T_{B}$ be a semi-Wakamatsu-tilting module. There is an equivalence of categories $(-)^{*}: \triangle(A) \leftrightharpoons \mathcal{T}: T \otimes_{B}-$.

Thus, the theorem provides an equivalence between a subcategory of A-mod associated to ${ }_{A} T$ and a subcategory of B-mod associated with the character module T^{+}.

Specialized to tilting modules and Wakamatsu-tilting modules, the above results can be obtained from the generalized Brenner-Butler theorem for tilting modules (See [13, Theorem 1.16]) and for Wakamatsu-tilting modules (See [17, Proposition 2.5]). In this sense, the above theorems are partial generalizations of the classical results for tilting theory and Wakamatsu-tilting theory.

Finally, using the concept of T-cograde of N with respect to semi-Wakama-tsu-tilting modules (See [12, Definition 3.2]), we get a similar version of Auslan-der-Bridger approximation theorem [9, Theorem 3.8]:

Theorem 1.3. Let ${ }_{A} T_{B}$ be a semi-Wakamatsu-tilting module, $M \in \operatorname{Copre}(T)$ and $n \geqslant 1$. If Tor-cograde $\operatorname{Ext}_{A}^{i}(T, M) \geqslant i$ for any $1 \leqslant i \leqslant n$, then there exist a module $U \in A$-mod and a homomorphism $f: U \rightarrow M$ satisfying the following conditions:
(1) $\mathcal{P}_{T}(A)-i d_{A} U \leqslant n$;
(2) $\operatorname{Ext}_{A}^{i}(T, f)$ is bijective for any $1 \leqslant i \leqslant n$.

As we know, tilting modules over a ring have many good properties. For example, tilting modules induce generally recollements of triangulated categories (see [4], [5]). If they, in addition, have smaller projective dimension or other homological properties (see [6], [7]), then they give rise to even recollements of derived categories of rings. In this paper, we want to obtain results analogous to those for tilting modules.

This paper is organized as follows. In Section 3, we introduce some important classes of modules by replacing semidualizing modules with semi-Wakamatsutilting modules. For instance, we define the concepts of T-Auslander class $\mathcal{A}_{T}(B), T$-Bass class $\mathcal{B}_{T}(A)$, and T-flat, etc. An equivalence between $\mathcal{A}_{T}(B)$ and $\mathcal{B}_{T}(A)$ is obtained. Another key point is that we give a nice property on $\mathcal{A}_{T}(B)$ and $\mathcal{B}_{T}(A)$. In Section 4, we establish an equivalence between the class of $\infty-T$-cotorsionfree modules and a subclass of the class of T-adstatic modules (i.e., Theorem 4.5). Not only that, but we study many homological properties on $\mathcal{P}_{T}(A)-\mathrm{pd}_{A} M$. In Section 5, we give a similar version of Auslander-Bridger approximation theorem and obtain a nice property of relative cotranspose (See Definition 4.1).

2. Preliminaries

Let A be an Artin R-algebra, that is, R is a commutative Artin ring and A is an R-algebra which is finitely generated as an R-module. The category of finitely generated left A-modules will be denoted by A-mod, respectively, the category of finitely generated right A-modules will be denoted by mod- A. Throughout this paper, all modules are invariably finitely generated.

Let \mathcal{X} be a subcategory of A-mod and M be a left A-module. A homomorphism $f: X \rightarrow M$ with $X \in \mathcal{X}$ is called a right \mathcal{X}-approximation (or, \mathcal{X}-precover) of M if the induced morphism $\operatorname{Hom}\left(X^{\prime}, f\right)$ is surjective for all $X^{\prime} \in \mathcal{X}$. Dually, a homomorphism $f: M \rightarrow X$ with $X \in \mathcal{X}$ is called a left \mathcal{X} approximation (or, \mathcal{X}-preenvelope) of M if the induced morphism $\operatorname{Hom}\left(f, X^{\prime}\right)$ is surjective for all $X^{\prime} \in \mathcal{X}$. For further details, see [2,3]. An \mathcal{X}-resolution of M is an exact sequence

$$
\cdots \longrightarrow X^{n} \longrightarrow X^{n-1} \longrightarrow \cdots \longrightarrow X^{1} \longrightarrow X^{0} \longrightarrow M \longrightarrow 0
$$

with $X^{i} \in \mathcal{X}$ for all $i \geqslant 0$. In addition, if the exact sequence is $\operatorname{Hom}(\mathcal{X},-)$ exact, then the exact sequence is called a proper \mathcal{X}-resolution of M. Dually, we can define the notion of \mathcal{X}-coresolution and proper \mathcal{X}-coresolution. We say that
M has \mathcal{X}-projective dimension at most m, denoted by \mathcal{X}-pd $(M) \leqslant m$, if there is an \mathcal{X}-resolution of M of the form $0 \rightarrow X^{m} \rightarrow \cdots \rightarrow X^{1} \rightarrow X^{0} \rightarrow M \rightarrow 0$.

Let T be a module in A-mod. We denoted by B the endomorphism algebra of T, thus T is an $A-B$ bimodule in the natural manner.

We say a module ${ }_{A} T$ is self-orthogonal if $\operatorname{Ext}^{i}(T, T)=0$ for any $i \geqslant 1$. Recall that an A-module T is Wakamatsu-tilting [16] provided that
(1) $\operatorname{End}_{B} T \cong A$, where $B:=\operatorname{End}_{A} T$ and,
(2) $\operatorname{Ext}_{A}^{i}(T, T)=0=\operatorname{Ext}_{B}^{i}(T, T)=0$ for all $i>0$.

In order to give more characteristics on n - T-cotorsionfree modules, we give the following definition:

Definition 2.1 ([12, Definition 2.11]). A module ${ }_{A} T_{B}$ is called semi-Wakama-tsu-tilting if $B:=\operatorname{End}_{A} T$ and ${ }_{A} T$ is self-orthogonal.

Setup: Throughout this paper, we shall fix such a semi-Wakamatsu-tilting module ${ }_{A} T_{B}$, and $\operatorname{add}\left({ }_{A} T\right)$ stands for the category consisting of all modules isomorphic to direct summands of finite direct sums of copies of ${ }_{A} T$ and Prod $\left({ }_{A} T\right)$ the category consisting of all modules isomorphic to direct summands of direct products of copies of ${ }_{A} T$.

We denote the following full subcategories of A-mod:
$\operatorname{Cogen}\left({ }_{A} T\right)=\{M \in A$-mod \mid there is an injective morphism from M to $\left.T^{n}, n \in N\right\}$,

Copre $\left({ }_{A} T\right)=\{M \in A-\bmod \mid$ there is an exact sequence

$$
0 \longrightarrow M \xrightarrow{f^{0}} T^{0} \xrightarrow{f^{1}} T^{1}
$$

with $T^{i} \in \operatorname{add} T$ for $\left.i=0,1\right\}$,
$\operatorname{Coapp}\left({ }_{A} T\right)=\{M \in A-\bmod \mid$ there is an exact sequence

$$
0 \longrightarrow M \xrightarrow{f^{0}} T^{0} \xrightarrow{f^{1}} T^{1}
$$

such that $\operatorname{Coker}\left(f^{0}\right) \in \operatorname{Cogen}(T)$ and f^{0} is an add T-preenvelope of $\left.M\right\}$,
Dually, we can define the subcategories $\operatorname{Gen}(T)$, $\operatorname{Pre}(T)$ and $\operatorname{App}(T)$.
For simplicity: We shall denote all left A modules by A-mod, all right A modules by mod- A and the functor $\operatorname{Hom}\left({ }_{A} T,-\right)$ by $(-)_{*}$. Especially, $0 \rightarrow L \rightarrow$ $M \rightarrow N \rightarrow 0$ is called $\operatorname{Hom}(T,-)$-exact exact sequence if $0 \rightarrow L_{*} \rightarrow M_{*} \rightarrow$ $N_{*} \rightarrow 0$ is an exact sequence.

Lemma 2.2 ([19, Lemma 2.5(1)]). Given modules ${ }_{A} M,_{A} N_{B},{ }_{A} F$. If ${ }_{B} F$ is a flat module, then the tensor evaluation homomorphism

$$
\operatorname{Hom}_{A}(M, N) \otimes_{B} F \longrightarrow \operatorname{Hom}_{A}\left(M, N \otimes_{B} F\right),
$$

which induces an isomorphism of abelian groups

$$
\operatorname{Ext}_{A}^{i}(M, N) \otimes_{B} F \cong \operatorname{Ext}^{i}\left(M, N \otimes_{B} F\right)
$$

For convenience, we give a dual version of [14, Lemma 9.71].

Lemma 2.3. Given modules $M_{A},{ }_{B} N_{A},{ }_{B} C$. If M_{A} is finite presented and ${ }_{B} C$ is an injective module, then there exists an isomorphism

$$
M \otimes_{B} \operatorname{Hom}_{A}(N, C) \cong \operatorname{Hom}_{B}\left(\operatorname{Hom}_{A}(M, N), C\right)
$$

which induces an isomorphism of abelian groups

$$
\operatorname{Tor}_{n}^{A}\left(M, \operatorname{Hom}_{B}(N, C)\right) \cong \operatorname{Hom}_{B}\left(\operatorname{Ext}_{A}^{n}(M, N), C\right)
$$

Wisbauer [18] pointed that for a module ${ }_{A} U_{B}$, arbitrary modules ${ }_{B} N,{ }_{A} M$, there exist canonical homomorphisms $\mu_{N}: N \longrightarrow \operatorname{Hom}_{A}\left(U, U \otimes_{B} N\right)$ and $\theta_{M}: U \otimes_{B} \operatorname{Hom}_{A}(U, M) \longrightarrow M$.

The following lemma give a characterization on θ_{M}.
Lemma 2.4 ([19, Lemma 2.1(3)]). If $M \in \operatorname{Gen}(U)$, then the evaluation map $\theta_{M}: U \otimes_{B} \operatorname{Hom}(U, M) \rightarrow M$ is surjective. If $M \in \operatorname{App}(U)$, then θ_{M} is bijective. Conversely, if θ_{M} is bijective, then $M \in \operatorname{App}(U)$. In particular, if $M \in \operatorname{add} U$, then θ_{M} is bijective.

On the other hand, here is a characterization on μ_{N}. We denote Bild := $\left\{N \in B-\bmod \mid \mu_{N}\right.$ is an isomorphism $\}$.
Lemma 2.5 ([19, Proposition 5.1]). For any $A-\bmod { }_{A} U$, the functor

$$
\operatorname{Hom}_{A}\left({ }_{A} U_{B},-\right): \operatorname{App}(U) \rightarrow \text { Bild }
$$

induces an equivalence, its inverse is $U \otimes_{B}-$.
Remark 2.6. Following [18], we call M (resp., N) U-static (resp., U-adstatic) if θ_{M} (resp., μ_{N}) is an isomorphism. We denote by $\operatorname{Stat}(U)$ and $\operatorname{Adst}(U)$ the class of all U-static modules and the class of all U-adstatic modules, respectively.
Lemma 2.7 ([18, Observation 2.4]). For any $A-\bmod _{A} U$, the functor

$$
\operatorname{Hom}_{A}\left({ }_{A} U_{B},-\right): \operatorname{Stat}(U) \rightarrow \operatorname{Adst}(U)
$$

defines an equivalence with inverse is $U \otimes_{B}-$.

3. Subcategories induced by semi-Wakamatsu-tilting modules

In [11], the author introduced and investigated properties of the Auslander and Bass classes, C-flats, C-projectives, and C-injectives with respect to a semidualizing (S, R)-bimodule $C={ }_{S} C_{R}$. In this section, we generalize these concepts by replacing the semidualizing module C with the semi-Wakamatsutilting module ${ }_{A} T_{B}$. Furthermore, we investigate many homological properties of them.
Definition 3.1. (a) The T-Auslander class $\mathcal{A}_{T}(B)$ with respect to T consists of all $B-\bmod N$ satisfying
(A1) $\operatorname{Tor}_{i \geqslant 1}^{B}(T, N)=0$;
(A2) $\operatorname{Ext}_{A}^{i \geqslant 1}\left(T, T \otimes_{B} N\right)=0$;
(A3) μ_{N} is an isomorphism.
(b) The T-Bass class $\mathcal{B}_{T}(A)$ with respect to T consists of all A-mod M satisfying
(B1) $\operatorname{Ext}_{A}^{i \geqslant 1}(T, M)=0$;
(B2) $\operatorname{Tor}_{i \geqslant 1}^{B}\left(T, \operatorname{Hom}_{A}(T, M)\right)=0$;
(B3) θ_{M} is an isomorphism.
It is easy to check that the following results are hold by routine verification.
Remark 3.2. (1) $\mathcal{A}_{T}(B)$ (resp., $\mathcal{B}_{T}(A)$) contains Auslander classes with respect to a semidualizing bimodule T (resp., Bass classes with respect to a semidualizing bimodule T).
(2) One can directly verify that $\mathcal{A}_{T}(B)$ contains all projective B-mod and $\mathcal{B}_{T}(A)$ contains all injective A-mod.
(3) Given modules $N \in B$-mod, $M \in A$-mod. The morphisms

$$
T \otimes_{B} \operatorname{Hom}_{A}\left(T, T \otimes_{B} N\right) \frac{\theta_{\left(T \otimes_{B} N\right)}}{T \otimes_{B} \mu_{N}} T \otimes_{B} N
$$

and
from Definition 3.1 yield

$$
\theta_{T \otimes_{B} N} \cdot\left(T \otimes_{B} \mu_{N}\right)=\operatorname{Id}_{T \otimes_{B} N}
$$

and

$$
\operatorname{Hom}_{A}\left(T, \theta_{M}\right) \cdot \mu_{\operatorname{Hom}_{A}(T, M)}=\operatorname{Id}_{\operatorname{Hom}_{A}(T, M)}
$$

In fact, there is an equivalence between $\mathcal{A}_{T}(B)$ and $\mathcal{B}_{T}(A)$.
Proposition 3.3. Let ${ }_{A} T_{B}$ be a semi-Wakamatsu-tilting module. Then there is an equivalence of categories

$$
T \otimes_{B}-: \mathcal{A}_{T}(B) \leftrightharpoons \mathcal{B}_{T}(A): \operatorname{Hom}_{A}(T,-)
$$

Proof. For any $N \in \mathcal{A}_{T}(B)$, we have $\operatorname{Ext}_{A}^{i \geqslant 1}\left(T, T \otimes_{B} N\right)=0$. Also, one can get $0=\operatorname{Tor}_{i \geqslant 1}^{A}(T, N) \cong \operatorname{Tor}_{i \geqslant 1}^{B}\left(T, \operatorname{Hom}_{A}\left(T, T \otimes_{B}, N\right)\right)$ since μ_{N} is an isomorphism. Moreover, the morphism $T \otimes_{B} \mu_{N}$ is an isomorphism, hence $\theta_{T \otimes_{B} N}$ is an isomorphism. Thus, $T \otimes_{B} N \in \mathcal{B}_{T}(A)$.

For any $M \in \mathcal{B}_{T}(A)$, by a routine verification similar to the above arguments, we can imply $\operatorname{Hom}_{A}(T, M) \in \mathcal{A}_{T}(B)$.

Furthermore, if $N \in \mathcal{A}_{T}(B)$ and $M \in \mathcal{B}_{T}(A)$, there are natural isomorphisms

$$
\mu_{N}: N \longrightarrow \operatorname{Hom}_{A}\left(T, T \otimes_{B} N\right)
$$

and

$$
\theta_{M}: T \otimes_{B} \operatorname{Hom}(T, M) \longrightarrow M
$$

Then it follows that the equivalence holds.

Proposition 3.4. $\mathcal{A}_{T}(B)$ and $\mathcal{B}_{T}(A)$ are closed under finite direct sums and direct summands.
Proof. Note that the functors Hom, Ext and Tor are additive, then we can verify the results directly.

We also introduce the following concepts as generalizations of C-flats, C projectives, and C-injectives with respect to a semidualizing bimodule C.
Definition 3.5. An A-mod is T-flat (resp., T-projective) if it has the form $T \otimes_{B} F$ for some flat (resp., projective) module ${ }_{B} F$. A B-mod is T-injective if it has the form $\operatorname{Hom}_{A}(T, I)$ for some injective module ${ }_{A} I$. Set the notation:

$$
\begin{aligned}
& \mathcal{F}_{T}(A)=\left\{\left.T \otimes_{B} F\right|_{B} F \text { is flat }\right\}, \\
& \mathcal{P}_{T}(A)=\left\{\left.T \otimes_{B} P\right|_{B} P \text { is projective }\right\}, \\
& \mathcal{I}_{T}(B)=\left\{\left.\operatorname{Hom}_{A}(T, I)\right|_{A} I \text { is injective }\right\} .
\end{aligned}
$$

The next lemma is key to describe the relationship between these mentioned classes.
Lemma 3.6. For modules ${ }_{B} U,{ }_{A} V$, the following are true:
(a) $V \in \mathcal{F}_{T}(A)$ if and only if $V \in \mathcal{B}_{T}(A)$ and $\operatorname{Hom}_{A}(T, V)$ is flat over B.
(b) $U \in \mathcal{P}_{T}(A)$ if and only if $U \in \mathcal{B}_{T}(A)$ and $\operatorname{Hom}_{A}(T, U)$ is projective over B.
(c) $Y \in \mathcal{I}_{T}(B)$ if and only if $Y \in \mathcal{A}_{T}(B)$ and $T \otimes_{B} Y$ is injective over A.

Proof. (a) For the sufficiency, by the definition of $\mathcal{B}_{T}(A)$, one can get θ_{V} is an isomorphism. Thus, $V \in \mathcal{F}_{T}(A)$ by the assumption.

For the necessity, firstly, by Lemma 2.2, we have:

$$
\operatorname{Ext}_{A}^{i \geqslant 1}\left(T, T \otimes_{B} F\right) \cong \operatorname{Ext}_{A}^{i \geqslant 1}(T, T) \otimes_{B} F=0
$$

where F is finitely generated flat left B-mod. Thus, the module $V=T \otimes_{B} F$ satisfies condition (B1) in Definition 3.1(2). Next, one can get that $\operatorname{Hom}_{A}(T, V)$ is flat B-mod since

$$
\begin{align*}
\operatorname{Hom}_{A}(T, V) & =\operatorname{Hom}_{A}\left(T, T \otimes_{B} F\right) \\
& \cong \operatorname{Hom}_{A}\left(T, T \otimes_{B}\left(\lim _{\rightarrow} P_{i}\right)\right) \\
& \left.\cong \lim _{\rightarrow} \operatorname{Hom}_{A}\left(T, T \otimes_{B} P_{i}\right)\right) \\
& \cong \lim _{\vec{\rightarrow}}\left(\operatorname{Hom}_{A}\left(T, T_{i}\right)\right) \tag{3.1}\\
& \cong \lim _{\rightarrow} P_{i} \\
& \cong{ }_{B} F,
\end{align*}
$$

where P_{i} is finitely generated projective left $B-\bmod$ and ${ }_{B} F$ is flat. Hence, the condition (B2) is automatically meet. Moreover, the above arguments imply the following result hold:

$$
\begin{equation*}
T \otimes_{B} \operatorname{Hom}_{A}\left(T, T \otimes_{B} F\right) \cong T \otimes_{B} F . \tag{3.2}
\end{equation*}
$$

Thus, the module V also satisfies condition (B3). Consequently, the equivalence holds.
(b) Compared to (a), the proof of (b) requires only minor adjustments. We omit it.
(c) For the sufficiency, by the definition of $\mathcal{A}_{T}(B)$, one can get μ_{Y} is an isomorphism. Thus, $V \in \mathcal{I}_{T}(B)$ by the assumption.

For the necessity, one may assume $Y=\operatorname{Hom}_{A}(T, I)$. By Remark 3.2(1), we know that for any injective module I, θ_{I} is an isomorphism. That is, $T \otimes_{B} Y$ is injective over A. So one can easily observe that $\operatorname{Ext}_{A}^{i \geqslant 1}\left(T, T \otimes_{B} Y\right)=0$. Hence μ_{Y} is an isomorphism. Moreover, $Y \cong \operatorname{Hom}_{A}\left(T, T \otimes_{B} Y\right)$. By Lemma 2.3, $\operatorname{Tor}^{\mathrm{B}}{ }_{i \geqslant 1}(T, Y)=\operatorname{Tor}^{\mathrm{B}}{ }_{i \geqslant 1}\left(T, \operatorname{Hom}_{A}(T, I)\right) \cong \operatorname{Hom}_{A}\left(\operatorname{Ext}_{A}^{i \geqslant 1}(T, T), I\right)=0$, as desired.

The next two propositions show basic properties on $\mathcal{F}_{T}(A), \mathcal{P}_{T}(A)$ and $\mathcal{I}_{T}(B)$.

Proposition 3.7. (1) $\mathcal{P}_{T}(A)=a d d{ }_{A} T$.
(2) $\mathcal{I}_{T}(B)=\operatorname{Prod} T^{+}$, where $T^{+}=\operatorname{Hom}_{A}(T, Q)$ with ${ }_{A} Q$ an injective cogenerator.

Proof. (1) It is clear that $\mathcal{P}_{T}(A) \subseteq \operatorname{add} T$. On the contrary, for the module $T^{(k)}$, we can obtain that

$$
\begin{align*}
T \otimes_{B} \operatorname{Hom}_{A}\left(T, T^{(k)}\right) & \cong T \otimes_{B} \operatorname{Hom}_{A}(T, T)^{(k)} \\
& \cong\left(T \otimes_{B} \operatorname{Hom}_{A}(T, T)\right)^{(k)} \tag{3.3}\\
& \cong T^{(k)} .
\end{align*}
$$

That is, $\theta_{T^{(k)}}$ is an isomorphism (or, $T^{(k)} \in \operatorname{App}(T)$, by Lemma 2.4, $\theta_{T^{(k)}}$ is an isomorphism). Now, suppose that ${ }_{A} M \in \operatorname{add} T$ and $M \oplus N=T^{(k)}$ for some $N \in A$-mod. Then there is a split exact sequence $0 \rightarrow M \rightarrow T^{(k)} \rightarrow N \rightarrow 0$, which induces the following commutative diagram with exact rows:

By the five lemma, θ_{M} is monic, hence θ_{N} is monic, and so θ_{M} is an isomorphism by the five lemma again. Notice that $\operatorname{Hom}_{A}(T, M)$ is a projective left A-mod since $\operatorname{Hom}_{A}(T, M) \oplus \operatorname{Hom}_{A}(T, N) \cong \operatorname{Hom}_{A}\left(T, T^{(k)}\right) \cong B^{(k)}$. So ${ }_{A} M \cong T \otimes_{B} M_{*} \in \operatorname{add} T$.
(2) The proof is dual to that for (1). For the convenience of readers, we give a complete proof. Firstly, It is clear that $\mathcal{I}_{T}(B) \subseteq \operatorname{Prod} T^{+}$. Conversely, for
the module $\left(T^{+}\right)^{J}$, we can obtain that

$$
\begin{align*}
\operatorname{Hom}_{A}\left(T, T \otimes_{B}\left(T^{+}\right)^{J}\right) & \cong \operatorname{Hom}_{A}\left(T,\left(T \otimes_{B} T^{+}\right)^{J}\right) \\
& \cong\left(\operatorname{Hom}_{A}\left(T, T \otimes_{B} T^{+}\right)\right)^{J} \tag{3.4}\\
& \cong\left(T^{+}\right)^{J}
\end{align*}
$$

That is, $\mu_{\left(T^{+}\right)^{J}}$ is an isomorphism. Now, suppose that ${ }_{B} M \in \operatorname{Prod}\left(T^{+}\right)^{J}$ and $M \oplus N=\left(T^{+}\right)^{J}$ for some $N \in B$-mod. Then there is a split exact sequence $0 \rightarrow M \rightarrow\left(T^{+}\right)^{J} \rightarrow N \rightarrow 0$, which induces the following commutative diagram with exact rows:

Using the same technique in (1), we know that μ_{M} is an isomorphism. Notice that $T \otimes_{B} M$ is an injective A-mod since $\left(T \otimes_{B} M\right) \oplus\left(T \otimes_{B} N\right) \cong T \otimes_{B}\left(T^{+}\right)^{J} \cong$ $\left(T \otimes_{B}\left(T^{+}\right)\right)^{J} \cong Q^{J}$. Thus, ${ }_{B} M \cong \operatorname{Hom}_{A}\left(T, T \otimes_{B} M\right) \in \operatorname{Prod} T^{+}$.

Proposition 3.8. The classes $\mathcal{F}_{T}(A), \mathcal{P}_{T}(A)$ and $\mathcal{I}_{T}(B)$ are closed under extensions.

Proof. We only to show the proof for $\mathcal{P}_{T}(A)$, since the proof of $\mathcal{F}_{T}(A)$ is similar and the proof of $\mathcal{I}_{T}(B)$ is dual. Assume that $0 \rightarrow L \rightarrow M \rightarrow N \rightarrow 0$ is an exact sequence of A-mod, and $L, N \in \mathcal{P}_{T}(A)$. Let $L=T \otimes_{B} P^{\prime}$, where P^{\prime} is a projective B-mod. By Lemma 2.2, we have $\operatorname{Ext}_{A}^{1}(T, L)=\operatorname{Ext}_{A}^{1}\left(T, T \otimes_{B} P^{\prime}\right)=$ 0 . Then we can obtain the following commutative diagram:

Lemma 3.6 implies θ_{L}, θ_{N} are isomorphisms and the five lemma forces θ_{M} to be an isomorphism as well. Then by the definition of the functors Ext, Tor, we obtain $M \in \mathcal{B}_{T}(A)$. Moreover, L_{*}, N_{*} are projective modules by Lemma 3.6. Thus, M_{*} is a projective module. Consequently, $M \in \mathcal{P}_{T}(A)$ by Lemma 3.6 again.

We conclude this section by giving a beautiful characterization on $\mathcal{A}_{T}(B)$, $\mathcal{B}_{T}(A)$. In order to give a concise proof, we show the next result.

Lemma 3.9. For any module $M \in B$-mod, if $\operatorname{Ext}_{A}^{i \geqslant 1}\left(T, T \otimes_{B} M\right)=0$, then

$$
\operatorname{Ext}_{A}^{i \geqslant 1}\left(T \otimes_{B} P, T \otimes_{B} M\right)=0
$$

for all projective $B-\bmod P$.

Proof. Let I^{\bullet} be an injective resolution of the A-mod $T \otimes_{B} M$ and P be an arbitrary projective B-mod. Hence, there are isomorphisms:

$$
\begin{align*}
\operatorname{Ext}_{A}^{i \geqslant 1}\left(T \otimes_{B} P, T \otimes_{B} M\right) & \cong H_{-i} \operatorname{Hom}_{B}\left(T \otimes_{B} P, I^{\bullet}\right) \\
& \cong H_{-i} \operatorname{Hom}_{B}\left(P, \operatorname{Hom}_{A}\left(T, I^{\bullet}\right)\right) \\
& \cong \operatorname{Hom}_{B}\left(P, H_{-i} \operatorname{Hom}_{A}\left(T, I^{\bullet}\right)\right) \tag{3.5}\\
& \cong \operatorname{Hom}_{B}\left(P, \operatorname{Ext}_{A}^{i>1}\left(T, T \otimes_{B} M\right)\right) \\
& =0 .
\end{align*}
$$

By the assumption, the desired conclusion follows.
Theorem 3.10. Let $U, V \in B-\bmod , S, W \in A-m o d$, and $S^{\prime} \in \bmod -A$.
(1) If $U \in \mathcal{A}_{T}(B)$ and $\operatorname{Tor}_{i \geqslant 1}^{B}(T, V)=0$, then

$$
\operatorname{Ext}_{B}^{i \geqslant 1}(V, U) \cong \operatorname{Ext}_{A}^{i \geqslant 1}\left(T \otimes_{B} V, T \otimes_{B} U\right)
$$

(2) If $S \in \mathcal{B}_{T}(A)$ and $\operatorname{Ext}_{A}^{i \geqslant 1}(T, W)=0$, then

$$
\operatorname{Ext}_{A}^{i \geqslant 1}(S, W) \cong \operatorname{Ext}_{B}^{i \geqslant 1}\left(\operatorname{Hom}_{A}(T, S), \operatorname{Hom}_{A}(T, W)\right)
$$

(3) If $S \in \mathcal{A}_{T}(B)$ and $\operatorname{Tor}_{i \geqslant 1}^{A}\left(S^{\prime}, T\right)=0$, then

$$
\operatorname{Tor}_{i \geqslant 1}^{A}\left(S^{\prime}, S\right) \cong \operatorname{Tor}_{i \geqslant 1}^{A}\left(S^{\prime} \otimes_{A} T, \operatorname{Hom}_{A}(T, S)\right)
$$

Moreover, these isomorphisms are natural isomorphisms of abelian groups.
Proof. (1) We show the proof by induction on i. For the case $i=0$, the fact that $U \in \mathcal{A}_{T}(B)$ and the Hom-tensor adjointness follows that

$$
\begin{align*}
\operatorname{Hom}_{B}(V, U) & \cong \operatorname{Hom}_{B}\left(V, \operatorname{Hom}_{A}\left(T, T \otimes_{B} U\right)\right) \\
& \cong \operatorname{Hom}_{A}\left(T \otimes_{B} V, T \otimes_{B} U\right) \tag{3.6}
\end{align*}
$$

Next, we suppose that $i>0$ and the conclusion hold for $j<i$. That is, there are isomorphisms

$$
\operatorname{Ext}_{B}^{j}\left(L^{\prime}, L\right) \cong \operatorname{Ext}_{A}^{j}\left(T \otimes_{B} L^{\prime}, T \otimes_{B} L\right)
$$

where $L \in \mathcal{A}_{T}(B)$ and $\operatorname{Tor}_{i \geqslant 1}^{B}\left(T, L^{\prime}\right)=0$. Now, we consider $U \in \mathcal{A}_{T}(B)$ and $\operatorname{Tor}_{i \geqslant 1}^{B}(T, V)=0$. Hence, there is an exact sequence

$$
\begin{equation*}
0 \rightarrow V^{\prime} \rightarrow P^{\prime} \rightarrow V \rightarrow 0 \tag{21}
\end{equation*}
$$

where P^{\prime} is a projective B-mod. Obviously, $\operatorname{Tor}_{i \geqslant 1}^{B}\left(T, V^{\prime}\right)=0$ and the sequence $\left(T \otimes_{B} \eta_{21}\right)$

$$
0 \rightarrow T \otimes_{B} V^{\prime} \rightarrow T \otimes_{B} P^{\prime} \rightarrow T \otimes_{B} V \rightarrow 0
$$

is exact. Now, applying the functor $\operatorname{Hom}_{B}(-, U)$ to η_{21} (resp., $\operatorname{Hom}_{B}\left(-, T \otimes_{B}\right.$ $U)$ to $\left(T \otimes_{B} \eta_{21}\right)$), we can obtain the following commutative diagram with exact
columns:

The two isomorphisms can be obtained by the induction hypothesis. On the other hand, $U \in \mathcal{A}_{T}(B)$, and hence $\operatorname{Ext}_{A}^{i \geqslant 1}\left(T, T \otimes_{B} M\right)=0$. Then the right zero follows from Lemma 3.9. Hence, there exists a unique isomorphism

$$
\operatorname{Ext}_{B}^{i}(V, U) \cong \operatorname{Ext}_{A}^{i}\left(T \otimes_{B} V, T \otimes_{B} U\right)
$$

which makes the induced diagram commutative. Also, it is not difficult to verify the isomorphism is natural in U and V. The similar statements (2), (3) are proved accordingly.

4. Equivalence and relative homological dimensions

We firstly recall the concept of n - T-cotorsionfree modules [12]. Then, we prove that there is an equivalence between $\infty-T$-cotorsionfree modules and a subclass of the class of T-adstatic modules. Some important results on relative homological dimension are obtained.
Definition 4.1. Let M be a left A-module in $\operatorname{Copre}\left({ }_{A} T\right)$, that is, there is an exact sequence
$\left(\rho_{22}\right) \quad 0 \longrightarrow M \xrightarrow{f^{0}} T^{0} \xrightarrow{f^{1}} T^{1}$.
Applying $\operatorname{Hom}\left({ }_{A} T,-\right)$ to $\left(\rho_{22}\right)$, we call $c \Sigma_{T}(M):=\operatorname{Coker} f_{*}^{1}$ the relative cotranspose of M with respect to T, or T-cotranspose of M. Moreover, there exists an exact sequence

$$
0 \longrightarrow\left(\cos _{T}^{i}(M)\right)_{*} \longrightarrow T_{*}^{i} \longrightarrow\left(\operatorname{co} \Omega_{T}^{i+1}(M)\right)_{*} \longrightarrow 0,
$$

where $M:=\cos \Omega_{T}^{0}(M), \operatorname{co} \Omega_{T}^{i+1}(M)=\operatorname{Coker} f^{i}$, and $i=0,1$.
Definition 4.2 ([12, Definition 2.4]). Let M be a finitely generated left A module in $\operatorname{Copre}\left({ }_{A} T\right)$. Then M is called n - T-cotorsionfree if $\operatorname{Tor}_{i}^{B}\left(T, c \Sigma_{T}(M)\right)$ $=0$ for all $1 \leqslant i \leqslant n$.

If $\operatorname{Tor}_{i}^{B}\left(T, c \Sigma_{T}(M)\right)=0$ for all $i \geqslant 1$, then M is called ∞-T-cotorsionfree. The class of ∞-T-cotorsionfree modules is denoted by $\triangle(A)$. Particularly, every module in A-mod is 0 -T-cotorsionfree.

Thought out this section, we always suppose that $\triangle(A) \subseteq \operatorname{Copre}\left({ }_{A} T\right)$ (resp., $\left.{ }_{A} T^{\perp} \subseteq \operatorname{Copre}\left({ }_{A} T\right)\right)$.

Remark 4.3. By [12, Corollary 2.6], a module M is $2-T$-cotorsionfree if and only if $M \in \operatorname{Stat}(T)$.

We denote that $\mathcal{S}=\left\{M \in B\right.$-mod $\left.\mid \operatorname{Ext}_{B}^{i \geqslant 1}\left(M, T^{+}\right)=0\right\}$ and $\mathcal{T}=\operatorname{Adst}(T) \cap$ \mathcal{S}, where $(-)^{+}=\operatorname{Hom}_{\mathbf{Z}}(-, \mathbf{Q} / \mathbf{Z})$ with \mathbf{Z} the additive group of integers and \mathbf{Q} the additive group of rational numbers.

Proposition 4.4. (1) If $p d_{A} T<\infty$, then $\triangle(A) \subseteq{ }_{A} T^{\perp}$.
(2) If $p d_{B^{o p}} T<\infty$, then ${ }_{A} T^{\perp} \subseteq \triangle(A)$.

Proof. (1) Let $M \in \triangle(A)$. Then by [12, Theorem 2.9], there exists a $\operatorname{Hom}_{A}\left({ }_{A} T\right.$, $-)$-exact exact sequence

$$
\cdots \longrightarrow T^{n} \longrightarrow \cdots \longrightarrow T^{1} \longrightarrow T^{0} \longrightarrow M \longrightarrow 0,
$$

with all $T^{i} \in \operatorname{add} T$. Set $K_{i}=\operatorname{Im}\left(T^{i} \rightarrow T^{i-1}\right)$ for any $i \geqslant 1$. We may assume $p d_{A} T=n<\infty$ by assumption. Thus, one can obtain $\operatorname{Ext}_{B}^{i}(T, M) \cong$ $\operatorname{Ext}_{A}^{i+n}\left(T, K_{n}\right)=0$ for any $i \geqslant 1$ by dimension shifting. Hence, $M \in{ }_{A} T^{\perp}$.
(2) Let $M \in{ }_{A} T^{\perp}$ and $p d_{B^{o p}} T=n<\infty$. Then for $i=0,1$, we consider the following B-mod exact sequence

$$
0 \longrightarrow\left(\cos _{T}^{i}(M)\right)_{*} \longrightarrow T_{*}^{i} \longrightarrow\left(\cos \Omega_{T}^{i+1}(M)\right)_{*} \longrightarrow 0 .
$$

By [12, Lemma 2.2], we have $\operatorname{Tor}_{n}^{B}\left(T_{B}, \operatorname{Hom}\left(T, T^{i}\right)\right)=0, n \geqslant 1$. Then there is an isomorphism

$$
\operatorname{Tor}_{j}^{B}\left(T, \operatorname{co\Omega }{ }_{T}^{i}(M)_{*}\right) \cong \operatorname{Tor}_{j+n}^{B}\left(T, \operatorname{co\Omega }{ }_{T}^{i+n}(M)_{*}\right)
$$

In particular, $\operatorname{Tor}_{1}^{B}\left(T, \cos \Omega_{T}^{2}(M)_{*}\right)=0$. Hence we have the following diagram with exact rows:

Because $\theta_{T^{1}}$ is an isomorphism by Lemma 2.4, $\theta_{\operatorname{co\Omega } \Omega_{T}^{1}(M)}$ is a monomorphism. Thus, $\operatorname{co} \Omega_{T}^{1}(M)$ is 2- T-cotorsionfree by [12, Corollary 2.6(2)]. On the other
hand, $\operatorname{Tor}_{1}^{B}\left(T, \cos \Omega_{T}^{1}(M)_{*}\right)=0$ by the argument, we also can get the following commutative diagram with exact rows:

Because $\theta_{T^{0}}$ is an isomorphism by Lemma 2.4, and by the snake lemma we know that θ_{M} is also an isomorphism. That is, M is $2-T$-cotorsionfree. So by [12, Corollary 2.10], there exists an exact sequence $0 \rightarrow K_{1} \rightarrow T^{0^{\prime}} \rightarrow M \rightarrow 0$ with $T^{0^{\prime}} \in \operatorname{add} T$ and $\operatorname{Ext}_{A}^{1}\left(T, K_{1}\right)=0$. Observe that $K_{1} \in{ }_{A} T^{\perp}$ for $M \in{ }_{A} T^{\perp}$, then repeat the same process for K_{1}, we obtain an A-mod exact sequence $0 \rightarrow K_{2} \rightarrow T^{1^{\prime}} \rightarrow K_{1}$ with $T^{1^{\prime}} \in \operatorname{add} T$ and $\operatorname{Ext}_{A}^{1}\left(T, K_{2}\right)=0$. Continue the discussion, we finally get a proper add T-resolution

$$
\cdots \longrightarrow T^{n^{\prime}} \longrightarrow \cdots \longrightarrow T^{1^{\prime}} \longrightarrow T^{0^{\prime}} \longrightarrow M \longrightarrow 0
$$

Consequently, $M \in \triangle(A)$.
The next theorems are our main results in this section:
Theorem 4.5. Let ${ }_{A} T_{B}$ be a semi-Wakamatsu-tilting module. There is an equivalence of categories $(-)^{*}: \triangle(A) \leftrightharpoons \mathcal{T}: T \otimes_{B}-$.

Proof. According to Lemma 2.7, the category of all 2-T-cotorsionfree modules and $\operatorname{Adst}(T)$ can form an equivalence, which is induced by the functors $(-)_{*}$ and $T \otimes_{B}-$. Hence, we only need to show that $(-)_{*}$ (resp., $T \otimes_{B}-$) maps $\triangle(A)$ (resp., \mathcal{T}) to \mathcal{T} (resp., $\triangle(A)$).

Let $M \in \triangle(A)$. Then by Lemma 2.7, we have $M_{*} \in \operatorname{Adst}(T)$. Moreover, by [12, Theorem 2.9], there exists a proper $\operatorname{add}_{A} T$-resolution

$$
\cdots \longrightarrow T^{n} \longrightarrow \cdots \longrightarrow T^{1} \longrightarrow T^{0} \longrightarrow M \longrightarrow 0
$$

of $M \in A$-mod. Thus, we can also get an exact sequence

$$
\cdots \longrightarrow\left(T^{n}\right)_{*} \longrightarrow \cdots \longrightarrow\left(T^{1}\right)_{*} \longrightarrow\left(T^{0}\right)_{*} \longrightarrow M_{*} \longrightarrow 0
$$

in B-mod. Applying the functor $T \otimes_{B}$ - to this exact sequence, then we easily imply $\operatorname{Tor}_{i \geqslant 1}^{B}\left(T, M_{*}\right)=0$ by dimension shifting and [12, Lemma 2.2]. Note that there is an isomorphism

$$
\operatorname{Ext}_{B}^{i \geqslant 1}\left(M_{*}, T^{+}\right) \cong\left[\operatorname{Tor}_{i \geqslant 1}^{B}\left(T, M_{*}\right)\right]^{+}=0 .
$$

So $M_{*} \in \operatorname{KerExt}_{B}^{i \geqslant 1}\left(-, T^{+}\right)$and $M_{*} \in \mathcal{T}$.
On the other hand, let $N \in \mathcal{T}$. Then μ_{N} is an isomorphism. Notice that there also exist isomorphisms

$$
\left[\operatorname{Tor}_{i \geqslant 1}^{B}\left(T,\left(T \otimes_{B} N\right)_{*}\right)\right]^{+} \cong\left[\operatorname{Tor}_{i \geqslant 1}^{B}(T, N)\right]^{+} \cong \operatorname{Ext}_{B}^{i \geqslant 1}\left(N, T^{+}\right)=0
$$

and $\operatorname{Tor}_{i \geqslant 1}^{B}\left(T,\left(T \otimes_{B} N\right)_{*}\right)=0$. Additionally, $T \otimes_{B} N$ is 2- T-cotorsionfree by Lemma 2.7. Thus, we can obtain that $T \otimes_{B} N \in \triangle(A)$ by [12, Corollary 2.6(3)].

For a subclass $\mathcal{C} \subseteq A$-mod, we denote $i d_{A} \mathcal{C}:=\sup \left\{i d_{A} C \mid C \in \mathcal{C}\right\}$. The following theorem establishes the relation between the relative homological dimensions of a module ${ }_{A} M$ and the corresponding standard homological dimensions of M_{*}.

Theorem 4.6. (1) $p d_{B} M_{*} \leqslant \mathcal{P}_{T}(A)-p d_{A} M$ for any $M \in A$-mod; the equality holds if $M \in \triangle(A)$.
(2) $i d_{A} T \otimes_{B} N \leqslant \mathcal{I}_{T}(B)-i d_{B} N$ for any $N \in B$-mod; the equality holds if $N \in \mathcal{A}_{T}(B)$.
(3) $\sup \left\{\mathcal{P}_{T}-p d_{A} M \mid M \in \triangle(A)\right.$ with $\left.\mathcal{P}_{T}-p d_{A} M<\infty\right\} \leqslant i d_{A} \mathcal{P}_{T}(A)$.
(4) $\sup \left\{\mathcal{F}_{T}-p d_{A} M \mid M \in \triangle(A)\right.$ with $\left.\mathcal{F}_{T}-p d_{A} M<\infty\right\} \leqslant i d_{A} \mathcal{F}_{T}(A)$.

Proof. (1) Let $M \in A-\bmod$ with $\mathcal{P}_{T}(A)-\operatorname{pd}_{A} M=n<\infty$. Then there exists an exact sequence

$$
0 \longrightarrow T^{n} \longrightarrow \cdots \longrightarrow T^{1} \longrightarrow T^{0} \longrightarrow M \longrightarrow 0
$$

with all $T^{i} \in \operatorname{add} T$ by Proposition 3.7. Note that all the T_{*}^{i} are projective B-mod, and T is a semi-Wakamatsu-tilting module, we can get the following exact sequence

$$
0 \longrightarrow T_{*}^{n} \longrightarrow \cdots \longrightarrow T_{*}^{1} \longrightarrow T_{*}^{0} \longrightarrow M_{*} \longrightarrow 0
$$

whenever applying the functor $(-)_{*}$. Thus, $\operatorname{pd}_{B} M_{*} \leqslant n$.
Conversely, assume that $M \in \triangle(A)$ and $p d_{B} M_{*}=n<\infty$. Then there is an exact sequence

$$
0 \longrightarrow P^{n} \longrightarrow \cdots \longrightarrow P^{1} \longrightarrow P^{0} \longrightarrow M_{*} \longrightarrow 0
$$

with all P^{i} projective. By [12, Corollary $\left.2.6(3)\right]$, we can obtain the following exact sequence
$0 \longrightarrow T \otimes_{B} P^{n} \longrightarrow \cdots \longrightarrow T \otimes_{B} P^{1} \longrightarrow T \otimes_{B} P^{0} \longrightarrow T \otimes_{B} M_{*}(\cong M) \longrightarrow 0$. Hence, $\mathcal{P}_{T}(A)-\operatorname{pd}_{A} M \leqslant n$.
(2) Let Q be an injective cogenerator. By the assumption, there exists an exact sequence

$$
0 \longrightarrow N \longrightarrow E^{0} \longrightarrow E^{1} \longrightarrow \cdots \longrightarrow E^{n} \longrightarrow 0
$$

with all $E^{i} \in \operatorname{Prod}\left(\operatorname{Hom}_{A}(T, Q)\right)$ by Proposition 3.7. It follows from Lemma 2.3 that $\operatorname{Tor}_{j \geqslant 1}^{A}\left(T, E^{i}\right)=0$ for any $0 \leqslant i \leqslant n$. Applying the functor $T \otimes_{B}-$ to the above exact sequence, we can obtain the following exact sequence

$$
0 \longrightarrow T \otimes_{B} N \longrightarrow T \otimes_{B} E^{0} \longrightarrow T \otimes_{B} E^{1} \longrightarrow \cdots \longrightarrow T \otimes_{B} E^{n} \longrightarrow 0
$$

Then by Remark $3.2(1), \mathcal{I}_{T}(B)-\operatorname{id}_{B} N$.

Conversely, suppose $N \in \mathcal{A}_{T}(B)$, then we have $\operatorname{Tor}_{i \geqslant 1}^{B}(T, N)=0$ and $\operatorname{Ext}_{A}^{i \geqslant 1}\left(T, T \otimes_{B} N\right)=0$. If $\mathcal{I}_{T}(B)-\operatorname{id}_{B} N=n<\infty$, i.e., there is an exact sequence

$$
0 \longrightarrow T \otimes_{B} N \longrightarrow I^{0} \longrightarrow I^{1} \longrightarrow \cdots \longrightarrow I^{n} \longrightarrow 0
$$

with all E^{i} injective. Hence, it is not hard to get the following exact sequence

$$
0 \longrightarrow\left(T \otimes_{B} N\right)_{*}(\cong N) \longrightarrow\left(I^{0}\right)_{*} \longrightarrow\left(I^{1}\right)_{*} \longrightarrow \cdots \longrightarrow\left(I^{n}\right)_{*} \longrightarrow 0
$$

with all $\left(I^{i}\right)_{*} \in \mathcal{I}_{T}(B)$. Thus, $\mathcal{I}_{T}(B)-\operatorname{id}_{B} N \leqslant n$.
(3) We may assume that $i d_{A} \mathcal{P}_{T}(A)=n<\infty$. Let $M \in \triangle(A)$ with $\mathcal{P}_{T^{-}}$ $\operatorname{pd}_{A} M=m<\infty$. By (1), $p d_{B} M_{*}=m$, and we can obtain the exact sequence $0 \longrightarrow T \otimes_{B} P^{m} \longrightarrow \cdots \longrightarrow T \otimes_{B} P^{1} \longrightarrow T \otimes_{B} P^{0} \longrightarrow T \otimes_{B} M_{*}(\cong M) \longrightarrow 0$. Notice that there is an isomorphism $\operatorname{Ext}_{A}^{i \geqslant 1}\left(T \otimes_{B} P^{k}, T \otimes_{B} P^{j}\right)=0$. We suppose $m>n$. Then we can obtain $\operatorname{Ext}_{A}^{1}\left(K, T \otimes_{B} P^{m}\right) \cong \operatorname{Ext}_{A}^{m}\left(M, T \otimes_{B} P^{m}\right)=0$ because $i d_{A} \mathcal{P}_{T}(A)=n$, where $K=\operatorname{Coker}\left(T \otimes_{B} P^{m} \rightarrow T \otimes_{B} P^{m-1}\right)$. Thus, the sequence $0 \rightarrow T \otimes_{B} P^{m} \rightarrow T \otimes_{B} P^{m-1} \rightarrow K \rightarrow$ splits and $K \in \mathcal{P}_{T}(A)$, which is a contradiction. Hence, $m \leqslant n$.
(4) It is similar to the proof of (3), we omit it.

To conclude this section, we give the following application, which as a criterion on $\mathcal{P}_{T}(A)-\mathrm{pd}_{A} M$.
Proposition 4.7. If $\mathcal{P}_{T}(A)-p d_{A} M<\infty$, then $\mathcal{P}_{T}(A)-p d_{A} M=\sup \{i \geqslant 0 \mid$ $\left.\operatorname{Ext}_{A}^{i}(M, T) \neq 0\right\}$.
Proof. By the above argument in Theorem 4.6(1), we set $K^{n-1}=\operatorname{Coker}\left(T^{n} \rightarrow\right.$ $\left.T^{n-1}\right)$. It is clear that $\operatorname{Ext}_{A}^{i}(M, T)=0$ for all $i \geqslant n+1$. Assume that $\operatorname{Ext}_{A}^{n}(M, T)=0$. Then $\operatorname{Ext}_{A}^{1}\left(K^{n-1}, T^{n}\right) \cong \operatorname{Ext}_{A}^{n}\left(M, T^{n}\right)=0$. It follows that the exact sequence $0 \rightarrow T^{n} \rightarrow T^{n-1} \rightarrow K^{n-1} \rightarrow 0$ splits. Hence, it yields that $K^{n-1} \in \mathcal{P}_{T}(A)$ and $\mathcal{P}_{T}(A)-\operatorname{pd}_{A} M \leqslant n-1$, which is a contradiction. As desired.

5. An analogous Auslander-Bridger approximation's theorem

In the following parts, we are committed to getting a similar version of the Auslander-Bridger approximation theorem (See [9, Theorem 3.8]) and devote ourself to give an application. In the end, we also obtain a nice property of relative cotranspose $c \Sigma_{T}(M)$ (See Definition 4.1).

For an integer $n \geqslant 0$, we have defined the concept of T-cograde of N with respect to T, refer to [12]. In order to better express the meaning of the first T in the notation ' T - $\operatorname{cograde}_{T} N$ ', in this paper, we change the original notation 'T-cograde ${ }_{T} N$ ' into 'Tor-cograde T N'.
Definition 5.1. Let N be in $B-\bmod$ and let $n \geqslant 0$. The Tor-cograde of N with respect to T, denoted by Tor-cograde $T_{T} N$, is defined to be the integer $n=\inf \left\{i \mid \operatorname{Tor}^{i}(T, N) \neq 0\right\}$.

Dually, we give the following definition:
Definition 5.2. Let M be in A-mod and let $n \geqslant 0$. The Ext-cograde of M with respect to T, denoted by Ext-cograde ${ }_{T} \mathrm{M}$, is defined to be the integer $n=\inf \left\{i \mid \operatorname{Ext}^{i}(T, M) \neq 0\right\}$.

The next theorem is our main result in this section, which can be regard as a similar version of the Auslander-Bridger approximation theorem (See [9, Theorem 3.8]).

Theorem 5.3. Let ${ }_{A} T_{B}$ be a semi-Wakamatsu-tilting module, $M \in \operatorname{Copre}(T)$ and $n \geqslant 1$. If Tor-cograde $\operatorname{Ext}_{A}^{i}(T, M) \geqslant i$ for any $1 \leqslant i \leqslant n$, then there exist a module $U \in A$-mod and a homomorphism $f: U \rightarrow M$ satisfying the following conditions:
(1) $\mathcal{P}_{T}(A)-i d_{A} U \leqslant n$;
(2) $\operatorname{Ext}_{A}^{i}(T, f)$ is bijective for any $1 \leqslant i \leqslant n$.

Proof. The proof is by induction on n. Firstly, let $n=1$ and

$$
P^{1} \xrightarrow{f_{1}} P^{0} \longrightarrow \operatorname{Ext}_{A}^{1}(T, M) \longrightarrow 0
$$

be a projective presentation of $\operatorname{Ext}_{A}^{i}(T, M)$. Hence, we can obtain the exact sequence

$$
0 \longrightarrow U \longrightarrow T \otimes_{B} P^{1} \xrightarrow{1 \otimes_{B} f_{1}} T \otimes_{B} P^{0} \longrightarrow T \otimes_{B} \operatorname{Ext}_{A}^{1}(T, M) \longrightarrow 0
$$

in B-mod, with $T \otimes_{B} P^{1}, T \otimes_{B} P^{0} \in \mathcal{P}_{T}(A)$. Thus, the fact that $T \otimes_{B}$ $\operatorname{Ext}_{A}^{1}(T, M)=0$ by assumption follows that $\mathcal{P}_{T}(A)-\operatorname{id}_{A} U \leqslant 1$.

On the other hand, note that $P^{1}, P^{0} \in B$-mod are projective, we have the following commutative diagram with exact rows:

where g^{1}, g^{0} are induced homomorphisms.
Then we can construct homomorphisms h^{1}, h^{0} to ensure the following commutative diagram with exact rows:

where f is a induced homomorphism and $h^{0}=\theta_{\operatorname{co\Omega } \Omega_{T}^{1}(M)} \bullet\left(1_{T} \otimes_{B} g^{0}\right), h^{1}=$ $\theta_{T^{0}} \bullet\left(1_{T} \otimes_{B} g_{1}\right)$.

Applying the functor $(-)_{*}$ to the above diagram, we can obtain the following commutative diagram with exact rows:

Notice that $\mu_{P^{0}}, \mu_{P^{1}}$ are isomorphisms since $P^{1}, P^{0} \in B$-mod are projective. By the naturalness of the functor μ, we know that $\left(1_{T} \otimes_{B} g^{0}\right)_{*} \bullet \mu_{P^{0}}=$ $\mu_{c o \Omega_{T}^{1}(M)_{*}} \bullet g^{0}$. Hence, one can obtain that

$$
\begin{align*}
\left(h^{0}\right)_{*} \bullet \mu_{P^{0}} & =\left(\theta_{\operatorname{co\Omega _{T}^{1}(M)}} \bullet\left(1_{T} \otimes_{B} g^{0}\right)\right)_{*} \bullet \mu_{P^{0}} \\
& =\left(\theta_{\operatorname{co\Omega _{T}^{1}(M)}}\right)_{*} \bullet\left(1_{T} \otimes_{B} g^{0}\right)_{*} \bullet \mu_{P^{0}} \\
& =\left(\theta_{\cos \Omega_{T}^{1}(M)}\right)_{*} \bullet \mu_{\cos \Omega_{T}^{1}(M)_{*}} \bullet g^{0} \tag{5.1}\\
& =1_{c o \Omega_{T}^{1}(M)_{*}} \bullet g^{0} \\
& =g^{0} .
\end{align*}
$$

Then, it is easy to obtain the fact that

$$
\begin{align*}
\delta^{\prime} \bullet\left(\mu_{P^{0}}\right)^{-1} & =\delta \bullet g^{0} \bullet\left(\mu_{P^{0}}\right)^{-1} \\
& =\delta \bullet\left(h^{0}\right)_{*} \bullet \mu_{P^{0}} \bullet\left(\mu_{P^{0}}\right)^{-1} \tag{5.2}\\
& =\delta \bullet\left(h^{0}\right)_{*} \\
& =\operatorname{Ext}_{A}^{1}(T, f) \bullet \delta^{\prime \prime} .
\end{align*}
$$

In other words, we can get the following commutative diagram with exact rows:

Thus, $\operatorname{Ext}_{A}^{1}(T, f)$ is bijective by the five lemma.
Now, we assume the result holds for $i=n-1 \geqslant 2$. That is, there exist a module $H \in A$-mod and a homomorphism $h^{\prime}: H \rightarrow M$ satisfying the following conditions:
(1) $\mathcal{P}_{T}(A)-$ id $_{A} H \leqslant n-1$;
(2) $\operatorname{Ext}_{A}^{i}\left(T, h^{\prime}\right)$ is bijective for any $1 \leqslant i \leqslant n-1$. Then by dimension shifting, also note that T is a semi-Wakamatsu-tilting module, there exists a $\operatorname{Hom}_{A}\left(-, \mathcal{P}_{T}(A)\right)$-exact exact sequence

$$
0 \longrightarrow H \xrightarrow{g^{\prime}} W \longrightarrow X \longrightarrow 0
$$

where $W \in \mathcal{P}_{T}(A)$. So we can construct the following commutative diagram with exact rows and columns:

where the middle column is split, the $\operatorname{Hom}_{A}\left(-, \mathcal{P}_{T}(A)\right)$-exact middle row can implies the following exact sequence

$$
0 \longrightarrow H_{*} \longrightarrow(M \oplus W)_{*} \longrightarrow L_{*} \longrightarrow 0
$$

Moreover, the induction of hypothesis follows that

$$
\begin{equation*}
\operatorname{Ext}_{A}^{1 \leqslant i \leqslant n-1}(T, L)=0, \operatorname{Ext}_{A}^{n}(T, M) \cong \operatorname{Ext}_{A}^{n}(T, L) \tag{23}
\end{equation*}
$$

Now, we take a projective resolution of $\operatorname{Ext}_{A}^{n}(T, M)$:

$$
P^{n} \longrightarrow \cdots \longrightarrow P^{1} \longrightarrow P^{0} \longrightarrow \operatorname{Ext}_{A}^{n}(T, M) \longrightarrow 0
$$

By assumption, Tor- $\operatorname{cograde}_{T} \operatorname{Ext}_{A}^{n}(T, M) \geqslant n$, so we get the exact sequence:

$$
0 \longrightarrow N \longrightarrow T \otimes_{B} P^{n} \longrightarrow \cdots \longrightarrow T \otimes_{B} P^{1} \longrightarrow T \otimes_{B} P^{0} \longrightarrow 0
$$

Hence, $\mathcal{P}_{T}(A)-\operatorname{id}_{A} N \leqslant n$. Moreover, we applying the functor $(-)_{*}$ to the above exact sequence, we get another exact sequence:

$$
0 \longrightarrow N_{*} \longrightarrow\left(T \otimes_{B} P^{n}\right)_{*} \longrightarrow \cdots \longrightarrow\left(T \otimes_{B} P^{1}\right)_{*} \longrightarrow\left(T \otimes_{B} P^{0}\right)_{*} \longrightarrow 0
$$

Note that $\mu_{P^{i}}$ are isomorphisms for all $1 \leqslant i \leqslant n$, we can easily get that

$$
\left(*_{24}\right) \quad \operatorname{Ext}_{A}^{1 \leqslant i \leqslant n-1}(T, N)=0, \quad \operatorname{Ext}_{A}^{n}(T, N) \cong \operatorname{Ext}_{A}^{n}(T, M)
$$

By $\left(*_{23}\right),\left(*_{24}\right)$ We give an observation:
($*_{25}$)

$$
\operatorname{Ext}_{A}^{n}(T, N) \cong \operatorname{Ext}_{A}^{n}(T, L)
$$

Indeed, let $0 \rightarrow L \rightarrow I^{0} \rightarrow \cdots \rightarrow I^{n-2} \rightarrow I^{n-1} \rightarrow K \rightarrow 0$ be induced by an injective resolution of L. Since $\operatorname{Ext}_{A}^{1 \leqslant i \leqslant n-1}(T, L)=0$, one can obtain the
following exact sequence:

where the vertical morphisms are induced by the projective modules.
By assumption, we applying the functor $T \otimes_{B}$-:

comparing the above two diagrams, we can easily obtain the observation $\left(*_{25}\right)$.
By the above arguments, there exist two exact sequence: $0 \rightarrow N \rightarrow L \oplus$ $W^{\prime} \rightarrow N^{\prime} \rightarrow 0$ and $\operatorname{Hom}_{A}\left(-, \mathcal{P}_{T}(A)\right)$-exact exact sequence $0 \rightarrow H \rightarrow M \oplus$ $W \oplus W^{\prime} \rightarrow L \oplus W^{\prime} \rightarrow 0$, where $W^{\prime}=T \otimes_{B} P^{n}$. Notice the following pullback diagram:

Then by the Horse Lemma, we finally get $\mathcal{P}_{T}(A)-\operatorname{id}_{A} U \leqslant n$ because $\mathcal{P}_{T}(A)$ $\operatorname{id}_{A} H \leqslant n-1, \mathcal{P}_{T}(A)-\operatorname{id}_{A} N \leqslant n$ and the first row in the above diagram is a $\operatorname{Hom}_{A}\left(-, \mathcal{P}_{T}(A)\right)$-exact exact sequence.

In addition, by $\left(*_{23}\right),\left({ }_{24}\right)$ and $\operatorname{Ext}_{A}^{n}\left(T, \mathcal{P}_{T}(A)\right)=0$, it is not hard for us to get the following commutative diagram:

Consequently, we obtain $\operatorname{Ext}_{A}^{n}(T, M) \cong \operatorname{Ext}_{A}^{n}(T, U)$.

The following result is an application of Theorem 5.3:
Corollary 5.4. Let $M \in \operatorname{Copre}\left({ }_{A} T\right)$, and let $n \geqslant 1$. If Tor-cograde ${ }_{T} \operatorname{Ext}_{A}^{i}(T$, $M) \geqslant i+1$ for any $0 \leqslant i \leqslant n$, then Ext-cograde $e_{T} M \geqslant n+1$.

Proof. We proceed by induction on n. If $n=0$, and $\left(T \otimes_{B} M\right)_{*}=0$. By Remark 3.2(2), $\mu_{M_{*}}$ is a split monomorphism and $M_{*}=0$.

Secondly, we suppose $n \geqslant 1$. By the assumption, we have that Ext-cograde ${ }_{T}$ $M \geqslant n$ and $\operatorname{Ext}_{A}^{0 \leqslant i \leqslant n-1}(T, M)=0$. By Theorem 5.3, there exist a module $U \in A-\bmod$ and a homomorphism $f: U \rightarrow M \in A$-mod satisfying the following conditions:
(1) $\mathcal{P}_{T}(A)-$ id $_{A} U \leqslant n$;
(2) $\operatorname{Ext}_{A}^{i}(T, f)$ is bijective for any $1 \leqslant i \leqslant n$. Then there exists an exact sequence:

$$
0 \longrightarrow U_{*} \longrightarrow P_{*}^{0} \cdots \longrightarrow P_{*}^{n-1} \longrightarrow P_{*}^{n} \longrightarrow \operatorname{Ext}_{A}^{n}(T, U) \longrightarrow 0,
$$

where $P^{i} \in \mathcal{P}_{T}(A)$ for all $0 \leqslant i \leqslant n$. Obviously, $\operatorname{Ext}_{A}^{n}(T, M) \cong \operatorname{Ext}_{A}^{n}(T, U)$. Hence, by the assumption again, we obtain Tor-cograde $\operatorname{Ext}_{A}^{i}(T, U) \geqslant n+1$. Thus, there exists the following commutative diagram with exact rows:

By Remark 3.2(2), $\theta_{P^{i}}$ are isomorphisms for any $1 \leqslant i \leqslant n$. Hence, θ_{U} is epic. By the naturality of θ, we have the following commutative diagram:

The fact $\left(T \otimes_{B} M\right)_{*}=0$ follows that $f \bullet \theta_{U}=0$. Thus, $f=0$, and $\operatorname{Ext}_{A}^{i}(T, f)=0$. Consequently, $\operatorname{Ext}_{A}^{i}(T, M)=0$ and Ext-cograde ${ }_{T} M \geqslant n+$ 1.

The ending section of this paper presents the following interesting results, which can obtain a nice property of $c \Sigma_{T}(M)$.

Proposition 5.5. If there exists an exact sequence

$$
\begin{equation*}
V_{1} \stackrel{g}{\longrightarrow} V_{0} \longrightarrow N \longrightarrow 0 \tag{26}
\end{equation*}
$$

which satisfy the following conditions:
(1) $\mu_{V_{0}}, \mu_{V_{1}}$ are isomorphisms.
(2) $\operatorname{Ext}_{A}^{1}\left(T, T \otimes_{B} V_{0}\right)=0=\operatorname{Ext}_{A}^{1}\left(T, T \otimes_{B} V_{1}\right)=0=\operatorname{Ext}_{A}^{2}\left(T, T \otimes_{B} V_{1}\right)$. Then there exists an exact sequence

$$
0 \longrightarrow \operatorname{Ext}_{A}^{1}(T, L) \longrightarrow N \xrightarrow{\mu_{N}}\left(T \otimes_{B} N\right)_{*} \longrightarrow \operatorname{Ext}_{A}^{2}(T, L) \longrightarrow 0,
$$

where $L=\operatorname{Ker}\left(1_{T} \otimes_{B} g\right)$.
Proof. By applying the functor $T \otimes_{B}-$ to $\left(*_{26}\right)$, one can get an exact sequence:

$$
0 \longrightarrow L \longrightarrow T \otimes_{B} V_{1} \xrightarrow{1_{T} \otimes_{B} g} T \otimes_{B} V_{0} \longrightarrow T \otimes_{B} N \longrightarrow 0 .
$$

Then it is easy to obtain the following commutative diagram:

where h is a induced morphism.
Hence, by the snake lemma, we have $\operatorname{Coker} \mu_{N} \cong \operatorname{Ext}{ }_{A}^{1}\left(T, \operatorname{Im}\left(1_{T} \otimes_{B} g\right)\right.$ and $\operatorname{Ker} \mu_{N} \cong$ Cokerh. The rest proof can be obtained by the dually proof in [12, Theorem 2.3], so we omit it.

Corollary 5.6. Let $M \in \operatorname{Copre}(T)$ be in A-mod. Then there exists an exact sequence
$0 \rightarrow \operatorname{Ext}_{A}^{1}(T, M) \longrightarrow c \Sigma_{T}(M) \xrightarrow{\mu_{c \Sigma_{T}(M)}}\left(T \otimes_{B} c \Sigma_{T}(M)\right)_{*} \longrightarrow \operatorname{Ext}_{A}^{2}(T, M) \rightarrow 0$.
Proof. By the definition of $c \Sigma_{T}(M)$, there is an exact sequence

$$
0 \longrightarrow M_{*} \longrightarrow T_{*}^{0} \longrightarrow T_{*}^{1} \longrightarrow c \Sigma_{T}(M) \longrightarrow 0 .
$$

Note that $\mu_{T_{*}^{0}}, \mu_{T_{*}^{1}}$ are isomorphisms, and $\operatorname{Ext}_{A}^{i \geqslant 1}\left(T, T \otimes_{B} T_{*}^{1}\right)=0=$ $\operatorname{Ext}_{A}^{i \geqslant 1}\left(T, T \otimes_{B} T_{*}^{0}\right)$.

Then the result follows from Corollary 5.4.
Acknowledgements. The authors would like to thank the referee for helpful comments and suggestions on the last version of the paper.

References

[1] I. Assem, D. Simson, and A. Skowroński, Elements of the representation theory of associative algebras. Vol. 1, London Mathematical Society Student Texts, 65, Cambridge University Press, Cambridge, 2006. https://doi.org/10.1017/CB09780511614309
[2] M. Auslander and I. Reiten, Applications of contravariantly finite subcategories, Adv. Math. 86 (1991), no. 1, 111-152. https://doi.org/10.1016/0001-8708(91)90037-8
[3] M. Auslander and S. O. Smalø, Preprojective modules over Artin algebras, J. Algebra 66 (1980), no. 1, 61-122. https://doi.org/10.1016/0021-8693(80)90113-1
[4] S. Bazzoni, Equivalences induced by infinitely generated tilting modules, Proc. Amer. Math. Soc. 138 (2010), no. 2, 533-544. https://doi.org/10.1090/S0002-9939-09-10120-X
[5] S. Bazzoni, F. Mantese, and A. Tonolo, Derived equivalence induced by infinitely generated n-tilting modules, Proc. Amer. Math. Soc. 139 (2011), no. 12, 4225-4234. https://doi.org/10.1090/S0002-9939-2011-10900-6
[6] H. Chen and C. Xi, Good tilting modules and recollements of derived module categories, Proc. Lond. Math. Soc. (3) 104 (2012), no. 5, 959-996. https://doi.org/10.1112/ plms/pdr056
[7] \qquad , Good tilting modules and recollements of derived module categories, II, J. Math. Soc. Japan 71 (2019), no. 2, 515-554. https://doi.org/10.2969/jmsj/78477847
[8] M. T. Dibaei and A. Sadeghi, Linkage of modules and the Serre conditions, J. Pure Appl. Algebra 219 (2015), no. 10, 4458-4478. https://doi.org/10.1016/j.jpaa.2015.02.027
[9] R. M. Fossum, P. A. Griffith, and I. Reiten, Trivial extensions of abelian categories, Lecture Notes in Mathematics, Vol. 456, Springer-Verlag, Berlin, 1975.
[10] E. L. Green, I. Reiten, and Ø. Solberg, Dualities on generalized Koszul algebras, Mem. Amer. Math. Soc. 159 (2002), no. 754 , xvi+67 pp. https://doi.org/10.1090/memo/0754
[11] H. Holm and D. White, Foxby equivalence over associative rings, J. Math. Kyoto Univ. 47 (2007), no. 4, 781-808. https://doi.org/10.1215/kjm/1250692289
[12] D. J. Liu and J. Q. Wei, n-T-cotorsionfree modules, Glasg. Math. J. (2019). https: //doi.org/10.1017/S0017089519000107
[13] Y. Miyashita, Tilting modules of finite projective dimension, Math. Z. 193 (1986), no. 1, 113-146. https://doi.org/10.1007/BF01163359
[14] J. J. Rotman, An Introduction to Homological Algebra, Pure and Applied Mathematics, 85, Academic Press, Inc., New York, 1979.
[15] X. Tang and Z. Huang, Homological aspects of the dual Auslander transpose, Forum Math. 27 (2015), no. 6, 3717-3743. https://doi.org/10.1515/forum-2013-0196
[16] T. Wakamatsu, On modules with trivial self-extensions, J. Algebra 114 (1988), no. 1, 106-114. https://doi.org/10.1016/0021-8693(88)90215-3
[17] _, Stable equivalence for self-injective algebras and a generalization of tilting modules, J. Algebra 134 (1990), no. 2, 298-325. https://doi.org/10.1016/00218693(90) 90055-S
[18] R. Wisbauer, Static modules and equivalences, in Interactions between ring theory and representations of algebras (Murcia), 423-449, Lecture Notes in Pure and Appl. Math., 210, Dekker, New York, 2000.
[19] C. C. Xi, The relative Auslander-Reitein theory of modules, http://math0.bnu.edu.cn/ \sim ccxi/Papers/Articles/rart.pdf

Dajun Liu
Institute of Mathematics
School of Mathematics Sciences
Nanjing Normal University
Nanjing 210023, P. R. China
Email address: ldjnnu2017004@163.com
Jiaqun Wei
Institute of Mathematics
School of Mathematics Sciences
Nanjing Normal University
Nanjing 210023, P. R. China
Email address: weijiaqun@njnu.enu.cn

[^0]: Received May 27, 2019; Revised November 21, 2019; Accepted January 17, 2020.
 2010 Mathematics Subject Classification. Primary 18G35, 16G10; Secondary 18E30, 16E05.

 Key words and phrases. Semi-Wakamatsu-tilting modules, T-Auslander class, T-Bass class, $\infty-T$-cotorsionfree modules, T-adstatic modules.

 This work was financially supported by the National Science Foundation of China (Grant No. 11771212) and the National Science Foundation for Distinguished Young Scholars of Jiangsu Province (Grant No. BK2012044) and a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.

