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Abstract. In this paper, we introduce and study the notions of weakly
⊕-supplemented modules, weakly D2 modules and weakly D2-covers. A

right R-module M is called weakly ⊕-supplemented if every non-small

submodule of M has a supplement that is not essential in M , and module
MR is called weakly D2 if it satisfies the condition: for every s ∈ S

and s 6= 0, if there exists n ∈ N such that sn 6= 0 and Im(sn) is a

direct summand of M , then Ker(sn) is a direct summand of M . The
class of weakly⊕-supplemented-modules and weakly D2 modules contains

⊕-supplemented modules and D2 modules, respectively, and they are
equivalent in case M is uniform, and projective, respectively.

1. Introduction

Throughout this paper, rings R are associative with unity and modules are
unitary. For an R-module M , we denote by rad(M), Soc(M) and E(M) the
Jacobson radical, the socle, and the injective hull of M , respectively. If M = R,
we write J = J(R) = rad(R). We denote by End(M) the endomorphism ring
of M , Mn(R) the n × n matrix ring over R, M (I) a direct sum of I-copies of
M , M I a direct product of I-copies of M , and Mod-R the category of right
R-modules. Let Z be the ring of integers and Zn be the ring of Z modulo n.
We also use N to denote the set of natural numbers. We also write N ≤M if N
is a submodule of M , N ≤ess M if N is an essential submodule of M , N �M
if N is a small submodule of M , and N ≤⊕ M if N is a (direct) summand of
M . If A ≤ M , by a complement of A in M , we mean a submodule C of M
maximal with respect to C ∩ A = 0. Let N and L be submodules of M , the
module N is called a supplement of L in M if N + L = M and N is minimal
with respect to this property, equivalently, M = N + L and N ∩ L � N . M
is called supplemented if every submodule of M has a supplement in M . The
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module M is called ⊕-supplemented if every submodule of M has a supplement
that is a direct summand of M .

A moduleM is calledNCS if no nonzero complement submodule is small ([6]
and [16]). In this paper, we will focus on modules whose non-small submodules
have supplements which are not essential (such modules are called weakly ⊕-
supplemented). This notion is a non-trivial dualization of NCS modules, since
we have the following hierarchy:

⊕-supplemented =⇒ weakly ⊕-supplemented =⇒ supplemented.

In Section 2 of this paper, examples for the reverse inclusions of the hierar-
chy are given. Also in Section 2, several interesting characterizations of weakly
⊕-supplemented are established. The connection between (semi)perfect rings R
and (⊕-)supplemented modules RR has been investigated by many authors be-
fore. In this direction we show, in Corollaries 2.4 and 2.5, that R is semiperfect
if and only if RR is ⊕-supplemented if and only if RR is weakly ⊕-supplemented
if and only if RR is supplemented, and R is right perfect if and only if every
projective right R-module is weakly ⊕-supplemented, respectively.

For R-modules M and N , M is called N -injective if every R-homomorphism
from any submodule of N to M can be extended to an R-homomorphism from
N into M . The module M is called quasi-injective if M is M -injective. Every
quasi-injective module M satisfies the (C2)-condition, i.e., every submodule
isomorphic to a (direct) summand of M is itself a summand of M ([20]). Dually,
M is called N -projective if every homomorphism from M to a homomorphic
image of N can be lifted to a homomorphism from M into N . A module M is
called quasi-projective if M is M -projective. The module M is called direct-
projective ([12]) if, for every submodule A of M with M/A isomorphic to a
direct summand of M , A is a direct summand of M . Every quasi-projective
module is direct-projective, but the converse does not hold. Direct-projective
modules are also called D2-modules. Every D2-module M is a D3-module, i.e.,
for any direct summands M1 and M2 of M with M = M1 +M2, M1 ∩M2 is a
direct summand of M . A module M is called D1 if, for every submodule A of
M , there is a decomposition M = M1 ⊕M2 with M1 ≤ A and A ∩M2 � M .
D1-modules are called lifting by Oshiro in [13]. Finally, M is called a D3-
module if M1 and M2 are direct summands of M and M = M1 + M2, then
M1 ∩M2 is a direct summand of M . Modules satisfying the conditions D1
and D2 are called discrete and satisfying the conditions D1 and D3 are called
quasi-discrete. For a full account, we refer the reader to [11] and [22].

Let M be a module and S = End(M). As a new characterization of D2
module, we obtain that M is a D2 module if and only if, for any s ∈ S, if Im(s)
is a direct summand of M , then Ker(s) is a direct summand of M . Because of
this fact, the module MR is called weakly D2 if it satisfies the condition: for
every s ∈ S and s 6= 0, if there exists n ∈ N such that sn 6= 0 and Im(sn) is a
direct summand of M , then Ker(sn) is a direct summand of M .
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In Section 3, we show some basic properties of weakly D2 modules and a
non-trivial generalization of both the D2 modules as well as the GD2-modules
(i.e., if for every submodule N of M for which M/N is isomorphic to M , then N
is a direct summand of M). Also, interestingly, we obtain that this new notion
is equivalent to ⊕-supplemented modules, weakly ⊕-supplemented modules,
supplemented modules and lifting modules under the additional assumption of
being projective (Theorem 3.3). Also in Section 3, several interesting charac-
terizations of weakly D2-modules are established. According to Bass [1], an
R-homomorphism f : P →M is called a projective cover of the R-module M ,
if P is projective, f is an epimorphism, and Ker(f)� P .

In Section 4, following the work of Bass in [1], we introduce the notion of
a weakly D2-cover and extend Basscharacterizations of (semi)perfect rings in
terms of projective covers to weakly D2-covers. We show that R is semiperfect
if and only if every finitely generated right R-module has a weakly D2-cover
(Theorem 4.5), R is right perfect if and only if every flat right R-module is
weakly D2 if and only if every right R-module has a weakly D2-cover (Theorem
4.7). Finally, by Theorem 4.8, R is a semiregular ring if and only if every finitely
presented right R-module has a weakly D2-cover.

Section 5 is devoted to rings whose certain classes of modules have weakly
D2-property. Among the other results, we show that R is a right PP-ring if and
only if every principal right ideal of M2(R), generated by a diagonal matrix,
is a weakly D2 module (Theorem 5.5), R is a semiprimary hereditary ring if
and only if every torsionless right R-module is projective if and only if every
torsionless left R-module is weakly D2 (Theorem 5.12), and R is a semilocal
ring if and only if every semiprimitive R-module is weakly D2 (Theorem 5.13).

2. On modules whose non-small submodules have supplements
which are not essential

A right R-module M will be called weakly ⊕-supplemented if every non-
small submodule of M has a supplement which are not essential in M .

We begin with several examples of weakly ⊕-supplemented modules to ini-
tiate the reader and to motivate our study.

Example 2.1. (1) ⊕-supplemented modules are weakly ⊕-supplemented.
Indeed, let M be a ⊕-supplemented module and N be a non-small
submodule of M . There exists a direct summand K of M such that
K is a supplement of N in M . If K ≤ess M , then K = M . Thus
N ∩M = N �M , a contradiction.

(2) Weakly ⊕-supplemented modules are supplemented.
(3) Semisimple modules are weakly ⊕-supplemented. Furthermore, every

module over a semisimple ring is weakly ⊕-supplemented. Indeed, let
H be a non-small submodule of a semisimple module M . Assume that
H has a supplement N which is essential in M , i.e., M = H +N with
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H ∩ N � N and N ≤ess M . Moreover, since N is also semisimple,
H ∩N = 0 and so H = 0, a contradiction.

A nonzero module M is said to be hollow if every proper submodule is small
in M , and it is said to be local if it is hollow and is finitely generated.

Lemma 2.2. The following are equivalent for a uniform R-module M :

(1) M is weakly ⊕-supplemented;
(2) M is hollow;
(3) M is ⊕-supplemented.

Proof. (1) ⇒ (2) Let N be a non-small submodule of M . By the assumption,
there exists a submodule K of M such that K is a supplement of N in M
and K is not essential in M . Since M is uniform, we get K = 0. Hence
N +K = M = N . Therefore every proper submodule of M is small in M , i.e.,
M is hollow.

(2)⇒ (3) and (3)⇒ (1) are clear. �

The following example shows that there exist supplemented modules which
are not weakly ⊕-supplemented modules, and weakly ⊕-supplemented modules
which are not ⊕-supplemented, respectively.

Example 2.3. (1) Let F be a field and R = F [[X,Y ]] be the ring of formal
power series over F in the indeterminates X and Y . Then R is a commutative
local ring. Consider the ideal I = RX + RY of R. Clearly, I is the unique
maximal ideal of R and is also uniform. By [7, page 473], the R-module I is
not ⊕-supplemented. Therefore I is not weakly ⊕-supplemented by Lemma
2.2(1). By [11, Theorem 4.41], I is supplemented.

(2) Let R be a commutative local ring which is not a valuation ring. Let a
and b be elements of R, neither of them divides the other. By taking a suitable
quotient ring, we may assume aR ∩ bR = 0 and am = bm = 0, where m is the
maximal ideal of R. Let F be a free module with generators x1 and x2. Let K
be the submodule of F generated by x1a− x2b and let M := F/K. Hence,

M = (x1R⊕ x2R)/(x1a− x2b)R = x1R+ x2R.

By [21, Theorem 2], M is an indecomposable module that cannot be gener-
ated by fewer that 2 elements. Thus, M is not hollow. Hence, M is not
⊕-supplemented. Since R is local, the R-modules M1 = x1R and M2 = x2R
are local modules. Now let us show that M1 is not essential in M . Consider
the submodule

N = x2aR = [(x2a)R+ (x1a− x2b)R]/(x1a− x2b)R.

Note that

M1 = [x1R+ (x1a− x2b)R]/(x1a− x2b)R

= [x1R⊕ (x2b)R]/(x1a− x2b)R.
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We have aR ∩ bR = 0 and obtain

N ∩M1 = [(x1a− x2b)R+ ((x1R⊕ (x2b)R) ∩ (x2a)R)]/(x1a− x2b)R = 0.

Moreover, N 6= 0, since otherwise x2a ∈ (x1a−x2b)R. Then there exists α ∈ R
such that x2a = (x1a − x2b)α. So, aα = 0 and a + bα = 0. It follows that
a = −bα. This contradicts the fact that b does not divide a. In the same manner
we can see that M2 is not essential in M . Note that [(Mi +Rad(M)/Rad(M)]
(i = 1, 2) are simple modules and

M/Rad(M) = [(M1 +Rad(M)/Rad(M)]⊕ [(M2 +Rad(M)/Rad(M)].

Now let L be a proper non-small submodule of M . Since M/Rad(M) is
semisimple, we have

M/Rad(M) = [(L+Rad(M))/Rad(M)]⊕ [(M1 +Rad(M))/Rad(M)]

or

M/Rad(M) = [(L+Rad(M))/Rad(M)]⊕ [(M2 +Rad(M))/Rad(M)].

We have Rad(M) � M and obtain M = L + M1 or M = L + M2. Therefore
M1 is a supplement of L or M2 is a supplement of L in M . It follows that M
is weakly ⊕-supplemented.

Recall that an epimorphism f : P → M with P projective, is called a
projective cover of M if Ker(f) � P . A ring R is right (semi)perfect if every
(finitely generated) R-module has a projective cover.

Corollary 2.4. The following are equivalent for a ring R:

(1) R is semiperfect;
(2) RR is ⊕-supplemented;
(3) RR is weakly ⊕-supplemented;
(4) RR is supplemented.

Corollary 2.5. The following conditions are equivalent for a ring R:

(1) R is right perfect;
(2) Every projective right R-module is weakly ⊕-supplemented.

Proof. (1)⇒ (2) This is obvious.
(2) ⇒ (1) By hypothesis, we can say that R(N) is weakly ⊕-supplemented.

Then R(N) is ⊕-supplemented by [5, Lemma 1.2]. Thus R is right perfect by
[7, Theorem 2.10]. �

A module M over an arbitrary ring is called π-projective if for every two
submodules U, V of M such that U + V = M , there exists an endomorphism
f of M with f(M) ≤ U and (1 − f)(M) ≤ V ([22]). Remark that projective
modules are π-projective and, by [22, 41.12 and 41.15], M is lifting if and only
if M is supplemented and π-projective if and only if M is ⊕-supplemented and
π-projective.
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Corollary 2.6. A module M is lifting if and only if M is weakly ⊕-supple-
mented and π-projective.

In the following observation, we collect a few basic easily-proven properties
of weakly ⊕-supplemented modules analogous to ⊕-supplemented modules.

Proposition 2.7. For a right R-module M over a ring R, the following hold:

(1) Any finite direct sum of weakly ⊕-supplemented R-modules is weakly
⊕-supplemented;

(2) If M is weakly ⊕-supplemented, then M/N is weakly ⊕-supplemented
for every fully invariant submodule N of M (i.e., if f(N) ⊆ N for all
endomorphisms f of M). Furthermore, if M is a weakly ⊕-supplement-
ed module, then so are M/Rad(M) and M/Soc(M);

(3) Let M = M1 ⊕M2. Then M2 is weakly ⊕-supplemented if and only if
for every submodule N of M with M1 ≤ N and N ∩M2 6� M2, there
exists a submodule K of M2 such that K 6≤ess M2, M = K + N and
N ∩K � K;

(4) Let D be a direct summand of a weakly ⊕-supplemented module M such
that for every non-essential submodule K of M with M = K+D, K∩D
is not essential in M2. Then D is a weakly ⊕-supplemented module;

(5) Let M be a weakly ⊕-supplemented module and K be a direct sum-
mand of M such that M/K is K-projective. Then K is weakly ⊕-
supplemented;

(6) Let M = M1 ⊕ · · · ⊕ Mn and Mi, Mj are relative projective for all
i 6= j. Then M is weakly ⊕-supplemented if and only if each Mi is
weakly ⊕-supplemented for all i.

Remark 2.8. We recall that the class of ⊕-supplemented modules is not closed
under taking direct summands. Because of this fact, authors of [5] introduced
and studied the notion of “completely ⊕-supplemented modules”.

3. Weakly D2 modules

We begin with a new characterization of D2 modules.

Lemma 3.1. Let M be a module and S = End(M). Then M is a D2 module
if and only if, for any s ∈ S, if Im(s) is a direct summand of M , then Ker(s)
is a direct summand of M .

Proof. We show that M is a D2 module. Let N ≤ M and consider the iso-
morphism f : M/N → A, where A is a direct summand of M , the canonical
projection π : M → M/N and the inclusion map i : A → M . Let s = ifπ.
Then Im(s) = A is a direct summand of M . By the assumption, Ker(s) is a
direct summand of M . Let m ∈ Ker(s). Then s(m) = ifπ(m) = 0 or π(m) = 0
because f is an isomorphism. It follows that m ∈ N , i.e., Ker(s) ≤ N . We
deduce that N = Ker(s) is a direct summand of M . The converse is clear. �
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Let M be a right R-module and S = End(M). The module MR is called
weakly D2 if it satisfies the condition: for every s ∈ S and s 6= 0, if there exists
n ∈ N such that sn 6= 0 and Im(sn) is a direct summand of M , then Ker(sn) is
a direct summand of M .

Example 3.2. (1) D2 modules are weakly D2.
(2) A module M is called GD2 if for every submodule N of M for which

M/N is isomorphic to M , then N is a direct summand of M [15].
Weakly D2 modules are GD2. Indeed, let M be a weakly D2 module
and N ≤ M such that M/N ∼= M . Then there exists an isomorphism
f : M/N → M . Consider s = fπ, where π : M → M/N is the
canonical projection. Then Ker(sn) = N . We note that Im(sn) = M
for all n ∈ N because s is an epimorphism. We have that M is weakly
D2 and obtain that N = Ker(sn) is a direct summand of M . Therefore
M is GD2.

(3) Let MZ = Zp ⊕ Zp2 with p a prime number. Then M is GD2 which is
not weakly D2.

(4) A quasi-discrete module is discrete if and only if it is weakly D2.
(5) Let M be a lifting, weakly D2 module. If M is dual automorphism-

invariant ([18]), then M is discrete by (4).

The following observation unifies weakly ⊕-supplemented modules and
weakly D2 modules with variants of supplements.

Theorem 3.3. The following conditions are equivalent for a projective module
M :

(1) M is ⊕-supplemented;
(2) M is weakly ⊕-supplemented;
(3) M is supplemented;
(4) M is lifting;
(5) M is lifting and weakly D2.

Proof. (1)⇒ (2) and (2)⇒ (3) are clear by definitions and the hierarchy.
(3)⇒ (1) This follows from [22, 41.15].
(3)⇒ (4) and (4)⇒ (5) are trivial.
(5)⇒ (3) This follows from [11, Proposition 4.8]. �

We continue with equivalent conditions of weakly D2 modules.

Proposition 3.4. The following statements are equivalent for a right R-module
M with S = End(M):

(1) M is weakly D2;
(2) For every s ∈ S and s 6= 0, there exists n ∈ N such that sn 6= 0 and if

Im(sn) = Im(e) with e2 = e ∈ S, then e ∈ snS;
(3) For every 0 6= s ∈ S, there exists n ∈ N such that sn 6= 0 and if

Im(sn) = Im(e) with e2 = e ∈ S, then eS = snS;
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(4) For every 0 6= s ∈ S, there exists n ∈ N such that sn 6= 0 and if
Im(sn) = Im(e) with e2 = e ∈ S, then Ker(esn) is a direct summand
of M ;

(5) For every 0 6= s ∈ S, there exists n ∈ N such that sn 6= 0 and if
snS ≤ eS ≤ {f ∈ S | f(M) ≤ sn(M)} with e2 = e ∈ S, then eS = snS;

(6) For every 0 6= s ∈ S, there exists n ∈ N such that sn 6= 0 and if
Im(sn) = Im(e) with e2 = e ∈ S, then {f ∈ S | f(M) ≤ sn(M)} = snS.

Proof. (1) ⇔ (4) Let M be a weakly D2 module and 0 6= s ∈ S. There exists
n ∈ N such that sn 6= 0 and if Im(sn) is a direct summand of M , implies that
Ker(sn) is a direct summand of M . Assume that Im(sn) = Im(e) = Ker(1− e)
for some idempotent e of R. Then Ker(sn) is a direct summand of M and
sn = esn. Thus Ker(esn) ≤⊕ M .

Conversely, for every 0 6= s ∈ S, assume that Im(sn) is a direct summand of
M . Then Im(sn) = Im(f) = Ker(1−f) for some f2 = f ∈ S, i.e., Ker(fsn) ≤⊕
M . Since Ker(sn) = Ker(fsn), we obtain that Ker(sn) is a direct summand of
M .

(2)⇒ (3) This is clear.
(3)⇒ (4) Let 0 6= s ∈ S. Assume that Im(sn) = Im(e) for some idempotent

e of R. By (3), eS = snS. Therefore e = snt and sn = esn for some t ∈ S,
and so sntsn = sn. Then Ker(sn) is a direct summand of M , i.e., Ker(sn) =
Ker(esn) is a direct summand of M .

(4)⇒ (2) Let 0 6= s ∈ S. Assume that Im(sn) = Im(e) for some idempotent
e of R. By (4), Ker(esn) is a direct summand of M . We have Im(sn) = Im(e)
and obtain that esn = sn and so Ker(sn) is a direct summand of M . There
exists a homomorphism φ : sn(M) → M such that snφ = 1sn(M). Note that
sn(M) = e(M). Hence e = sn(φe) ∈ snS.

(3) ⇔ (5) and (5) ⇔ (6) For any e2 = e ∈ S, snS ≤ eS ≤ {f ∈ S | f(M) ≤
sn(M)} if and only if Im(sn) = Im(e). �

Recall that the D2-condition is inherited by direct summands. More gener-
ally, we have:

Proposition 3.5. The class of modules with Di-conditions, 1 ≤ i ≤ 3, GD2-
condition and weakly D2-condition, respectively, are closed under taking direct
summands.

Proof. We refer to [11, Lemma 4.7] for Di-conditions, and for GD2-modules
we refer to [10, Proposition 4.3].

Assume that M is a weakly D2 module and f : e(M) → e(M) is a homo-
morphism with e2 = e ∈ S = End(M). Let s = ιfπ with π : M → e(M) the
canonical projection and ι : e(M)→M the inclusion. Then s(M) = ιfπ(M) =
f(e(M)). Since M is weakly D2, there exists n ∈ N such that sn 6= 0 and if
Im(sn) is a direct summand of M , then Ker(sn) is a direct summand of M .
On the other hand, we have sn(m) = fn(em) for all m ∈ M , which implies
sn(M) = fn(e(M)). Now assume that if Im(fn) is a direct summand of e(M),
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then Im(sn) is a direct summand of M . It follows that Ker(sn) is a direct sum-
mand of M . On the other hand, Ker(sn) = Ker(fn)⊕(1−e)(M) which implies
that Ker(fn) is a direct summand of e(M). Thus e(M) is weakly D2. �

4. Weakly D2-covers

Proposition 4.1. Assume that a weakly D2 module M has a decomposition
M = A1 ⊕ A2 and f : A1 → A2 is an R-homomorphism with Im(f) ≤⊕ A2.
Then Ker(f) ≤⊕ A1.

Proof. To show that Ker(f) ≤⊕ A1, we first assume that f : A1 → A2 is
a nonzero epimorphism. Let s := ιfπ with the inclusion ι : A2 → M and
the canonical projection π : M → A1. Then s 6= 0, s(M) = (ιfπ)(M) =
(ιf)(A1) = ι(A2) = A2 and s2(M) = ιfπ(A2) = 0. They imply that s2 = 0 and
Im(s) is a direct summand of M . We have that M is a weakly D2 module and
obtain that Ker(s) is a direct summand of M , and so Ker(s) = Ker(f) ⊕ A2.
Then Ker(f)⊕A2 is a direct summand of M . Thus Ker(f) is a direct summand
of A1.

Now, let f : A1 → A2 be an R-homomorphism and A2 = Im(f) ⊕ B for a
submodule B of A2. Then A1 ⊕ Im(f) is a direct summand of M . Since every
direct summand of a weakly D2-module is a weakly D2 module (Proposition
3.5), by applying the preceding argument to the module A1 ⊕ Im(f), we get
Ker(f) ≤⊕ A1. �

Corollary 4.2. Assume that P is a projective module and P ⊕M is a weakly
D2 module. If there exists an epimorphism P →M , then M is also a projective
module.

Proof. Assume that h : P →M is an epimorphism. By Proposition 4.1, Ker(h)
is a direct summand of P . Thus M ∼= P/Ker(h) and so M is projective. �

Generally, the class of weakly D2 modules is not closed under taking direct
sums, similar to the case of the class of D2 modules.

Proposition 4.3. The following conditions are equivalent for a ring R:

(1) R is a semisimple ring;
(2) Every factor module of an injective right R-module is weakly D2;
(3) Every factor module of the right R-module (R⊕R)R is weakly D2;
(4) Every right R-module is weakly D2;
(5) The direct sum of any two weakly D2-modules is weakly D2.

Proof. (1)⇒ (2), (1)⇒ (3) and (1)⇒ (4)⇒ (5) are obvious.
(2)⇒ (1) First, we note that if I is a right ideal of R, then E(R)⊕(E(R)/I)

is weakly D2, where E(−) denotes the injective hull. By Proposition 4.1, the
canonical map η : E(R) → E(R)/I splits, and so I is a direct summand of
E(R). Thus I is a direct summand of R.
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(3) ⇒ (1) If I is a right ideal of R, then R ⊕ R/I is a weakly D2-module.
By Proposition 4.1, the canonical map η : R→ R/I splits. Hence, I is a direct
summand R.

(5) ⇒ (1) Let S be a simple right R-module and f : R → S an R-
epimorphism. By Corollary 4.2, S is projective since R ⊕ S is a weakly D2-
module. Thus R is semisimple. �

Definition 4.4. An R-homomorphism φ : P → M is called weakly D2-cover
of the right R-module M , if P is a weakly D2 module, φ is an epimorphism,
and Ker(φ)� P .

Recall the following Bass characterizations of (semi)perfect rings in terms of
projective covers.
• R is a right (semi)perfect ring if and only if every (finitely generated) right

R-module has a projective cover if and only if every (simple) semisimple right
R-module has a projective cover.
• R is a right perfect ring if and only if every flat right R-module is projective.

Theorem 4.5. The following statements are equivalent for a ring R:

(1) R is semiperfect;
(2) Every finitely generated right R-module has a weakly D2-cover;
(3) Every 2-generated right R-module has a weakly D2-cover.

Proof. (1)⇒ (2)⇒ (3) Clear.
(3)⇒ (1) Let M be a simple right R-module. There exists an epimorphism

ψ : RR →M . By (3), there exists an epimorphism φ : X → RR⊕M such that
X is a weakly D2 module and Ker(φ)� X. Consider the natural projections
p1 : RR ⊕ M → RR and p2 : RR ⊕ M → M . Then p1φ : X → RR is an
epimorphism. By the projectivity of RR, we get X = Ker(p1φ) ⊕ T with
T ≤ X. Let M ′ := Ker(p1φ). Now X/M ′ ∼= RR and X/M ′ ∼= T and so
RR
∼= T . Hence, we can regard X = M ′ ⊕RR. Clearly, f = φ|M ′ : M ′ →M is

an epimorphism.
Now we will show that M ′ is the projective cover of M . Assume that A +

Ker(f) = M ′. Since Kerf ≤ Ker(φ), we have RR+A+Ker(φ) = M ′+RR = X
whence RR + A = RR + M ′. Hence A = M ′ or Ker(f) � M ′. On the other
hand, since RR is projective, there exists ψ : RR → M ′ such that fψ = ψ.
But Ker(f) � M ′ and so ψ is an epimorphism. Since X = M ′ ⊕ RR is a
weakly D2 module, we obtain that M ′ is projective by Corollary 4.2. Thus R
is semiperfect. �

The following example shows that, unlike projective covers, weakly D2-
covers are not unique.

Example 4.6. Let R be a local ring that is not division. Then η : R→ R/J(R)
and id : R/J(R)→ R/J(R) are non-isomorphic weakly D2-covers of the simple
R-module R/J(R). Now id : R/J(R) → R/J(R) is a weakly D2-cover which
is not a projective cover.
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Theorem 4.7. The following statements are equivalent for a ring R:

(1) R is right perfect;
(2) Every flat right R-module is weakly D2;
(3) Every right R-module has a weakly D2-cover.

Proof. (1)⇒ (2) and (1)⇒ (3) are clear.
(2) ⇒ (1) Let M be a flat right R-module, F a free right R-module and

f : F → M an R-epimorphism. Since T = M ⊕ F is flat, it is a weakly D2
module by the hypothesis. By Proposition 4.1, f splits and M is projective.
Hence R is a right perfect ring.

(3)⇒ (1) Let M be a right R-module. There exist a free module F and an
epimorphism ψ : F →M . By (2), there exists an epimorphism φ : X → F ⊕M
such that X is a weakly D2 module and Ker(φ)� X. Now, by the same proof
of (3)⇒ (1) of Theorem 4.5, there exists a projective cover of M as desired. �

Recall that a right R-module M is said to be finitely presented if there is an
exact sequence Rm → Rn →M → 0.

A ring R is called semiregular if every finitely presented right (left) R-module
has a projective cover.

Theorem 4.8. R is a semiregular ring if and only if every finitely presented
right R-module has a weakly D2-cover.

Proof. This follows from Theorem 4.5 and the fact that the direct sum of any
two finitely presented modules is again finitely presented. �

5. Rings whose certain classes of modules have weakly D2-property

In this section, we will focus on some important rings whose certain classes
of modules satisfy the weakly D2 condition.

von Neumann regular rings:

An element a of a ring R is called von Neumann regular if there exists an
element b in R such that a = aba. The ring is called von Neumann regular
if all its elements are von Neumann regular. We note that if a, b ∈ R and
c = a− aba is von Neumann regular, then a is von Neumann regular.

According to Lee, Rizvi and Roman, a module M is called d-Rickart (or dual
Rickart) if the image in M of any single element of S = End(M) is generated
by an idempotent of S. Equivalently, ∀ϕ ∈ S, ϕ(M) = Im(ϕ) = e(M) for some
e2 = e ∈ S ([9]).

Theorem 5.1. The following conditions are equivalent for a module M with
S = End(M):

(1) S is a von Neumann regular ring;
(2) M is a d-Rickart, weakly D2 module.

Proof. (1)⇒ (2) This is clear.
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(2)⇒ (1) Let x ∈ S, x 6= 0. Since M is weakly D2, there exists n ∈ N such
that xn 6= 0 and if Im(xn) is a direct summand of M , then Ker(xn) is also
a direct summand of M. Moreover, since M is d-Rickart, Im(xn) is a direct
summand of M . It follows that Ker(xn) is also a direct summand of M and so
xn is a regular element of S. If n = 1, then x is regular. Otherwise, since xn is
regular, there exists c ∈ S such that xn = xncxn. Let y = xn−1−xn−1(cx)xn−1.
Then y2 = 0. If y = 0, then xn−1 = xn−1(cx)xn−1 or xn−1 is regular. If y 6= 0,
then by above proof, we obtain that y is also regular. It follows xn−1 is regular.
Thus, by induction on n, we have x is regular. Hence S is a von Neumann
regular ring. �

We have the following corollaries.

Corollary 5.2. A ring R is von Neumann regular if and only if R is right
d-Rickart right weakly D2.

Corollary 5.3 ([9, Theorem 3.8]). Let M be a right R-module and S =
End(M). Then S is a von Neumann regular ring if and only if M is a d-
Rickart D2 module.

S-rings:

R is called a right S-ring if every finitely generated flat right R-module is
projective ([14]). R is an S-ring if it is both a left and right S-ring.

Note that every semiperfect ring is an S-ring.

Theorem 5.4. The following statements are equivalent for a ring R:

(1) R is a right S-ring;
(2) Every finitely generated flat right R-module is quasi-projective;
(3) Every finitely generated flat right R-module is weakly D2.

Proof. This is similar to the proof of Theorem 4.7. �

PP-rings:

We will use the following remark to study some results of right PP-rings via
weakly D2 modules.

For a right R-module M , we consider the following condition:

(∗) If M = A1 ⊕ A2 for some submodules A1 and A2 of M , then every
R-epimorphism f : A1 → A2 is split.

On can check that weakly D2 modules satisfy the (∗)-condition by Propo-
sition 4.1. Note that Morita equivalence preserves summands, epimorphisms,
and isomorphisms. Therefore, if R and S are Morita equivalent rings with the
category equivalence F : Mod-R −→ Mod-S, then a right R-module MR sat-
isfies the (∗)-condition if and only if F (M)S satisfies the (∗)-condition. Thus,
the weakly D2-condition is a Morita invariant property of modules.

Recall that R is called a right PP-ring if every principal right ideal of R is
projective.



WEAKLY ⊕-SUPPLEMENTED MODULES AND WEAKLY D2 MODULES 703

Theorem 5.5. The following statements are equivalent for a ring R:

(1) R is a right PP-ring;
(2) Every principal right ideal of M2(R), generated by a diagonal matrix,

is a weakly D2 module.

Proof. (1)⇒ (2) This follows from [19, Lemma 3].
(2)⇒ (1) Let S = M2(R), a ∈ R and I a principal right ideal of S generated

by the diagonal matrix [ a 0
0 1 ]. As a right S-module, I is a weakly D2 module. If

e = [ 1 0
0 0 ], then S and R are Morita equivalent via M →Me, where M is a right

S-module. Since Ie ∼= aR⊕R as right R-modules and I satisfies the condition
(∗), we can obtain that aR⊕R satisfies condition (∗) as a right R-module, and
so the canonical epimorphism η : R→ aR splits. Thus aR is projective and R
is a right PP -ring. �

Semihereditary rings:

A ring R is called a right (semi)hereditary if every (finitely generated) right
ideal of R is projective, equivalently, if every (finitely generated) submodule of
a projective right R-module is projective. R is called (semi)hereditary if it is
both left and right (semi)hereditary.

Theorem 5.6. The following statements are equivalent for a ring R:

(1) R is a right semihereditary ring;
(2) Every finitely generated submodule of a projective right R-module is

weakly D2;
(3) For any finitely generated free right R-module F , every principal right

ideal of S = End(FR) is a weakly D2 module.

Proof. (1)⇒ (2) This is obvious.
(2) ⇒ (1) Let K be a finitely generated submodule of a projective right

R-module P and f : F → K an R-epimorphism with FR finitely generated and
free. Since F ⊕K is a finitely generated submodule of the projective module
F ⊕ P , we can obtain that F ⊕K is a weakly D2 module by the hypothesis.
By Corollary 4.2, K is projective.

(1)⇒ (3) This follows from [4, Theorem 2.4].
(3) ⇒ (1) Let F be a finitely generated free right R-module and S =

End(FR) ∼= Mn(R). Then F ⊕ F is a free right R-module such that End(F ⊕
F ) = M2(S). By Theorem 5.5, since each principal right ideal of M2(S) is a
weakly D2-module, S is a right PP -ring. By [4, Theorem 2.4], R is a right
semihereditary ring. �

Theorem 5.7. The following statements are equivalent for a ring R:

(1) R is a right semihereditary right S-ring;
(2) R is a left semihereditary left S-ring;
(3) Every finitely generated submodule of a flat right R-module is weakly

D2;
(4) Every finitely generated submodule of a flat left R-module is weakly D2.
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Proof. (1)⇔ (2) This follows from [14, Proposition 4.10].
(1)⇒ (3) Let K be a finitely generated submodule of a flat right R-module

F . Since R is right semihereditary, K is flat by [8, Theorem 4.67] and so is
projective. Hence K is a weakly D2-module.

(3)⇒ (1) This follows from Theorems 5.4 and 5.6.
(2)⇔ (4) This is similar to (1)⇔ (3). �

Π-coherent rings

A module MR is coherent if every finitely generated submodule of M is
finitely presented. A ring R is called left (right) coherent if RR (resp. RR) is
coherent.

Let Π = ΠRR be an arbitrary product of copies of RR. According to Camillo
[2], a ring R is called right Π-coherent if every finitely generated submodule
of Π is finitely presented. R is called Π-coherent if it is both left and right
Π-coherent.

We say M is a Π-weakly D2-module if ΠMR is a weakly D2-module.

Theorem 5.8. The following conditions are equivalent for a ring R:

(1) R is right perfect left coherent;
(2) The direct product of any family of copies of R is projective as a right

R-module;
(3) All direct products of projective right R-modules are weakly D2;
(4) All direct products of flat right R-modules are weakly D2;
(5) Every projective right R-module is Π-weakly D2.

Proof. (1)⇔ (2)⇒ (4)⇒ (3) They follow from [3, Theorem 3.2].
(3) ⇒ (1) Let M =

∏
i∈I Mi be a direct product of projective right R-

modules and f : F →M an R-epimorphism with F free. By Corollary 4.2, M
is projective since M × F ∼= M ⊕ F is a weakly D2 module. By [3, Theorem
3.3], R is right perfect and left coherent.

(3)⇒ (5) This is clear.
(5) ⇒ (3) Let M =

∏
i∈I Mi be a direct product of projective right R-

modules, f : F → M an R-epimorphism with F free, and gi : M → Mi

the canonical projection, i ∈ I. Since each Mi is projective, the epimorphism
gi◦f : F →Mi is split; i.e., there exist submodules Ai, Ti ≤ F with F = Ai⊕Ti
and Mi

∼= Ai, i ∈ I. As∏
i∈I

F =
∏
i∈I

(Ai ⊕ Ti) ∼=
∏
i∈I

(Ai)⊕ (
∏
i∈I

Ti)

and
∏

i∈I F is a weaklyD2-module, it follows from Proposition 3.5 that
∏

i∈I Ai

is a weakly D2 module. Consequently, M =
∏

i∈I Mi
∼=

∏
i∈I Ai is a weakly

D2 module. �

A right R-module M is called torsionless if it can be embedded in a direct
product of copies of RR.
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Theorem 5.9. The following statements are equivalent for a ring R:

(1) R is a semihereditary Π-coherent ring;
(2) Every finitely generated torsionless right R-module is projective;
(3) Every finitely generated torsionless right R-module is weakly D2;
(4) Every finitely generated torsionless left R-module is projective;
(5) Every finitely generated torsionless left R-module is weakly D2.

Proof. (1)⇒ (2) This follows from [17, Theorem 3.5].
(2)⇒ (3) This is obvious.
(3) ⇒ (2) Let M be a finitely generated torsionless right R-module, F a

finitely generated free right R-module and η : F → M an R-epimorphism.
Since F ⊕M is finitely generated and torsionless, the module M is projective
by Corollary 4.2.

(2) ⇒ (1) Since every finitely generated torsionless right R-module is pro-
jective, the ring R is right semihereditary right Π-coherent. (1) ⇔ (4) ⇔ (5)
They are symmetric. �

Semiprimary rings:

The following observation is a special case of Theorem 5.6 and [4, Theorem
2.3].

Theorem 5.10. The following statements are equivalent for a ring R:

(1) R is right hereditary;
(2) Every submodule of a projective right R-module is weakly D2;
(3) Every principal right ideal of S = End(FR) is a weakly D2-module, for

any free right R-module F .

We recall that a ring R is called semiprimary if the Jacobson radical J(R)
of R is nilpotent and the ring R is semilocal, i.e., R = J(R) has a finite length,
equivalently, it is semisimple.

Theorem 5.11. The following statements are equivalent for a ring R:

(1) R is a semiprimary hereditary ring;
(2) R is a right hereditary right perfect ring;
(3) R is a left hereditary left perfect ring;
(4) Every submodule of a flat right R-module is weakly D2;
(5) Every submodule of a flat left R-module is weakly D2.

Proof. (2) ⇔ (4) and (3) ⇔ (5) They are consequences of Theorems 4.7 and
5.10.

(1)⇔ (2)⇔ (3) They follow from [19, Corollary 2]. �

A ring R is right semihereditary if and only if every torsionless left R-module
is flat (see [3, Theorem 4.1]).

Theorem 5.12. The following statements are equivalent for a ring R:

(1) R is a semiprimary hereditary ring;
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(2) Every torsionless right R-module is projective;
(3) Every torsionless left R-module is projective;
(4) Every torsionless right R-module is weakly D2;
(5) Every torsionless left R-module is weakly D2.

Proof. (1) ⇒ (2) By Theorem 5.8, the direct product of any family of copies
of R is projective as a right R-module. Since R is right hereditary, every
submodule of ΠRR is projective. This means every torsionless right R-module
is projective.

(2)⇒ (4) This is clear.
(4)⇒ (2) Let M be a torsionless right R-module, F a free right R-module,

and η : F →M an R-epimorphism. Since F ⊕M is torsionless, we obtain that
M is projective by Corollary 4.2.

(2)⇒ (1) By the hypothesis and Theorem 5.8, R is a right hereditary right
perfect ring. Now, by Theorem 5.11, R is a semiprimary hereditary ring.

(1)⇔ (3)⇔ (5) They follow by a symmetrical argument. �

Theorem 5.13. The following conditions are equivalent for a ring R:

(1) R is semilocal;
(2) Every semiprimitive R-module is weakly D2;
(3) Every finitely generated semiprimitive R-module is weakly D2;
(4) Every 2-generated, semiprimitive R-module is weakly D2.

Proof. (1)⇒ (2)⇒ (3)⇒ (4) They are obvious.
(4)⇒ (1) Let R′ = R/J(R) and P a simple R′-module. Since R′ and P are

J-semisimple as R-modules and R′ ⊕ P is 2-generated, by hypothesis, R′ ⊕ P
is weakly D2 as an R′-module. By Corollary 4.2, the simple R′-module P is
projective. Thus, R′ is a semisimple ring, i.e., R is semilocal. �
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