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HELMHOLTZ DECOMPOSITION AND SEMIGROUP

THEORY TO THE FLUID AROUND A MOVING BODY

Hyeong-Ohk Bae

Abstract. To understand the interaction of a fluid and a rigid body,

we use the concept of B-evolution. Then in a similar way to the usual
Navier-Stokes system, we obtain a Helmholtz type decomposition. Using

B-evolution theory and the decomposition, we work on the semigroup to
analyze the linear part of the system.

1. Introduction

We consider the interaction of a rigid body and a fluid, which describes the
motion of a fluid L around a rigid body B moving through the liquid L that
fills the whole space. This phenomenon is well described in [4], and we follow
similar notations for the formulation. The rigid body B is assumed to be an
open, connected and bounded set in R3. The region occupied by the rigid body
B at time t is denoted by Bt with B0 = B by convention. Then Ω(t) := R3 \ Bt
is the region occupied by the fluid L at time t.

The velocity field of the motion of B with respect to an inertial frame I is
denoted by V = V (x, t):

V (x, t) = η(t) + w(t)×
(
x− xc(t)

)
,

where η(t) = ẋc(t), xc(t) is the position of the center of B at time t, and w(t)
is the angular velocity of B. The Eulerian velocity and pressure fields of the
liquid L in I are denoted by v = v(x, t) and q = q(x, t). The equations of
conservation of linear momentum and mass of L with respect to I are given by

ρ
dv

dt
= ∇ · T (v, q) + ρF(x, t),

∇ · v = 0
for (x, t) ∈

⋃
t>0

Ω(t)× R,(1)
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where ρ is the density of L, d/dt is the material derivative, F is the body force
acting on L, for example the gravity, and T (v, q) is the Cauchy stress tensor
with shear viscosity µ:

T (v, q) = −q1 + 2µD(v), D(v) =
1

2
(∇v + (∇v)>),

where 1 is the identity tensor.
The liquid is assumed to be at rest at infinity:

lim
|x|→∞

v(x, t) = 0,

and also satisfy

v(x, t) = V (x, t) (x, t) ∈
⋃
t>0

Σ(t)× {t},

where Σ(t) is the boundary of Ω(t).
There are other similar equations describing the motion of rigid body-fluid,

and there are also several results on the existence of solutions for the motion
of rigid bodies in a viscous fluid. For example, [1, 2, 4, 5, 8, 11,14].

In this paper, we approach to this problem from the perspective of the
semigroup theory. The final aims of the subject is to analyze the full Navier-
Stokes equations, however, as a first step we consider linear part, the Stokes
equations, and fractional derivatives of the prime term of the equations for the
future analysis to the full Navier-Stokes equations. This article consists of three
parts. The first result is the Helmholtz type decomposition, and the second
result is to study mathematical theory of the linear parts. Our final destination
of this approach is to analyze the Navier-Stokes problem interacted with the
rigid body, which is our next subject. For that, in this article as a third result
we provide several properties of the linear operator including fractional powers.

In this point of view, there are several results. Grobbelaar-Van Dalsen and
Sauer [7] worked on a symmetric rigid body performing a rotation in a fluid.
In their model the body does not translate, instead it only rotates depending
on time t. They obtained the existence of strong solutions using B-evolution
theory in [12]. A similar problem is treated in [9]; the case that a rotating
body with constant speed, but no translation. In [9], it is shown that the linear
operator ∆ + (ω× x) · ∇ generates a C0 semigroup contraction on L2, which is
not analytic.

In Section 2, we review the derivation of the problem in [4]. In Section 3, we
obtain a Helmholtz type decomposition, which is one of our main results. In
Section 4, we apply the B-evolution theory developed in [12,13] to the problem
to find its solution. In Section 5 we provide several properties of the operators
for the future study of the full interaction problem of the rigid body and the
Navier-Stokes fluid.
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2. Formulations of the problem

In this section we review the formulation of the problem from (1) in [4].
Denote by m and ρB the mass and the density of the rigid body B, respectively.
The inertia tensor I of B with respect to the center of B is defined by the relation

a · I · b =

∫
Bt
ρB[a× (x− xc)] · [b× (x− xc)]

for all a, b ∈ R3. The equations of motion of B in the frame I are given by

m
dη

dt
= F −

∫
Σ(t)

(T (v, q) ·N − ρv(v − V ) ·N),

d(I · w)

dt
= M −

∫
Σ(t)

(x− xc)× (T ·N − ρv(v − V ) ·N),

(2)

where N is the inward unit normal vector to Σ(t), and F and M are total
external force and external torque with respect to the center, acting on B.

The motions of B and L will be determined by the above equations, once
the initial conditions on v and V are prescribed. The region Ω(t) occupied by
L is an unknown function of t. In [4], the problem is reformulated in a frame
S attached to B, where this region remains the same at all times. It is done in
the following transformations:

x = Q(t) · y + xc(t), Q(0) = 1, xc(0) = 0,

where 1 is the identity tensor, and Q(t) is the orthogonal linear transformation
satisfying

d

dt
(Q(t) · a) = w(t)× (Q(t) · a) for all a ∈ R3.

Then, new variables and notations are also introduced in the following ways:
for B,

ξ(t) = Q>(t) · η(t), ω(t) = Q>(t) · w(t),

I = Q> · I ·Q, G(t) = Q> · g,

and for L,

u(y, t) = Q>(t) · v(Q(t) · y + xc(t), t), p(y, t) = q(Q(t) · y + xc(t), t),

T (u, p) = Q> · T (Q · u, p) ·Q.

Notice that I is independent of time, since

a · I · b =

∫
B
ρB(a× y) · (b× y) for all a, b ∈ R3.

For the Navier-Stokes liquid, the Cauchy tensor is given by

T (v, p) ≡ TNS(v, p) = −p1 + 2µD(v),
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where µ is the shear viscosity coefficient (assumed to be 1). Then, the following
system is obtained from (1) in [4];

∂u

∂t
+Re(u− uΣ) · ∇u+ ω × u = ∆u−∇p+G in Ω× (0,∞),

∇ · u = 0 in Ω× (0,∞),

lim
|x|→∞

u(x, t) = 0,

u(x, t) = uΣ(x, t) (x, t) ∈ Σ× (0,∞),

where uΣ(x, t) = ξ+ω×x, and G is obtained from F . Here Ω := Ω(0) = R3 \B
is a fixed region in R3, Σ is the boundary of Ω and Re is the Reynolds number.

From (2), the following equations are obtained: in (0,∞),

m
dξ

dt
+Remω × ξ = Q> · F −

∫
Σ

T (u, p) · n,

I dω
dt

+Reω × (Iω) = Q> ·M −
∫

Σ

x× (T (u, p) · n),

where n = QT · N is the unit normal to Σ directed toward B. The initial
conditions are given by

u(x, 0) = u0, ξ(0) = ξ0, ω(0) = ω0.(3)

Let J1, J2, J3 and J4 be the boundary operators defined by

J1p ≡ −m−1/2

∫
Σ

pn, J2u ≡ −m−1/2

∫
Σ

D(u) · n,

J3p ≡ −I−1/2

∫
Σ

x× (pn), J4u ≡ −I−1/2

∫
Σ

x× (D(u) · n).

We finally obtain the following system:
ut +∇p = ∆u−Re(u− uΣ) · ∇u− ω × u+G,

∇ · u = 0,

m1/2ξt + J1p = J2u−Rem1/2ω × ξ +m1/2Q> · F,
I1/2ωt + J3p = J4u−ReI−1/2ω × (Iω) + I−1/2Q> ·M

(4)

with the initial condition (3), and the boundary condition is

(5) lim
|x|→∞

u(x, t) = 0, u(x, t) = uΣ(x, t) (x, t) ∈ Σ× (0,∞),

where u0 = ξ0 + ω0 × x on Σ, and uΣ(x, t) = ξ + ω × x. Here, I1/2I1/2 = I
and I−1/2 is its inverse.

Like in many articles, for example [2, 7], we also ignore the external force
terms. Since in this article we are interested in the semigroup theory, we
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consider the linear parts of the system with the same initial and boundary
conditions (3), (5):

ut +∇p = ∆u, in Ω× (0,∞),

∇ · u = 0, in Ω× (0,∞),

m1/2ξt + J1p = J2u, in (0,∞),

I1/2ωt + J3p = J4u, in (0,∞).

(6)

3. Helmholtz type decomposition

For the study of the Navier-Stokes equations, people, in many cases, try
to remove the pressure term and obtain a system consisting of velocity alone
using the Helmholtz decomposition and the Leray projection. The system
(4) contains the pressure terms. In order to remove these terms we obtain a
Helmholtz type decomposition in this section. We need several definitions of
spaces and operators.
◦ Space Y0:
We consider the Hilbert space

Y0 := L2(Ω)× R3 × R3 =
{

[v, ζ, θ] : v ∈ L2(Ω), ζ ∈ R3, θ ∈ R3
}

equipped with the usual norm∥∥[v, ζ, θ]
∥∥
Y0

:=
(
‖v‖2L2(Ω) + |ζ|2 + |θ|2

)1/2

and the inner product〈
[v1, ζ1, θ1], [v2, ζ2, θ2]

〉
Y0

:=
〈
v1, v2

〉
L2(Ω)

+ ζ1 · ζ2 + θ1 · θ2.

◦ Space Φσ and Space X:
Following Grobberlaar-Van Dalsen and Sauer [7], we also introduce the space

Φσ of all vector fields φ ∈ C∞0,σ(R3) such that φ = ξ+ω×x in a neighborhood of

Ωc for some constant vectors ξ, ω, where C∞0,σ(R3) is the set of infinitely smooth,
divergence free functions with compact support. It is quite obvious that for
each φ ∈ Φσ there exist unique vectors ξ(φ), ω(φ) such that φ = ξ(φ)+ω(φ)×x
in a neighborhood of Ωc. Moreover, the mapping φ 7→ [ξ(φ), ω(φ)] is linear
from Φσ into R3 × R3.

The space X denotes the closure of Φσ in L2(Ω).
◦ Mapping K and Space Y:
Define K : Φσ → Y0 by

Kφ := [φ,m1/2ξ(φ), I1/2ω(φ)] for all φ ∈ Φσ.

We denote by Y the closure of K (Φσ) in Y0. Note that K : Φσ → Y0 is
linear. Hence, Y is a closed subspace of the Hilbert space Y0. It follows from
the projection theorem in the Hilbert space theory that Y0 = Y⊕ Y⊥.
◦ Projection P:
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Let P be the orthogonal projection of Y0 onto Y, so that

(7) KerP = Y⊥ and PKφ = Kφ for all φ ∈ Φσ.

The goal of this section is to prove the following characterization of Y⊥,
which provides a Helmholtz type decomposition of Y0. This is one of the main
theorems.

Theorem 3.1.
Y⊥ =

{
[∇p,J1p,J3p] : p ∈ D1,2(Ω)

}
,

where D1,2(Ω) := {π ∈ L2
loc(Ω) : ∇π ∈ L2(Ω)} is the homogeneous Sobolev

space.

Proof. Define G :=
{

[∇p,J1p,J3p] : p ∈ D1,2(Ω)
}
.

We first show that G ⊂ Y⊥. To do this, let φ ∈ Φσ and p ∈ D1,2(Ω) be
given. Then setting [ξ, ω] = [ξ(φ), ω(φ)], we have

〈Kφ, [∇p,J1p,J3p]〉Y0

=

∫
Ω

φ · ∇p dx+m1/2ξ · J1p+ I1/2ω · J3p

= −
∫

Ω

p∇ · φdx+

∫
Σ

pφ · nds− ξ ·
∫

Σ

pn ds− ω ·
∫

Σ

x× (pn) ds

=

∫
Σ

p (φ− ξ(φ)− ω(φ)× x) · nds = 0.

This proves that G ⊥ K (Φσ) (orthogonal). Since K (Φσ) is dense in Y, it
follows that G ⊥ Y and so G ⊂ Y⊥.

To prove that Y⊥ ⊂ G, suppose that [v, ζ, θ] ∈ Y⊥. Then for all φ ∈ Φσ, we
have

(8) 〈v, φ〉L2(Ω) +m1/2ζ · ξ(φ) + I1/2θ · ω(φ) = 〈[v, ζ, θ],Kφ〉Y0
= 0.

Noticing that if φ ∈ C∞0,σ(Ω), then [ξ(φ), ω(φ)] = [0, 0], we deduce that

〈v, φ〉L2(Ω) = 〈[v, ζ, θ],Kφ〉Y0
= 0 for all φ ∈ C∞0,σ(Ω).

Hence by the famous De Rham theorem (see [3, Chapter III] e.g.), there exists
a scalar p ∈ D1,2(Ω) such that v = ∇p in Ω.

To show that [v, ζ, θ] ∈ G, it now remains to prove that [ζ, θ] = [J1p,J3p].
To do this, let ξ, ω ∈ R3 be given. For all x ∈ R3, we define

φ(x) =
1

2
∇×

[
ρ(x)

(
ξ × x− |x|2ω

)]
,

where ρ ∈ C∞0 (R3) is a cut-off function with ρ = 1 near Ωc. Then it is easy to
show that φ ∈ Φσ and [ξ, ω] = [ξ(φ), ω(φ)]. Hence by (8),

0 = 〈[v, ζ, θ],Kφ〉Y0
=

∫
Ω

∇p · φdx+m1/2ζ · ξ + I1/2θ · ω

=

∫
Σ

pφ · nds+m1/2ζ · ξ + I1/2θ · ω
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=

∫
Σ

p(ξ + ω × x) · nds+m1/2ζ · ξ + I1/2θ · ω

= ξ ·
(∫

Σ

pn ds+m1/2ζ

)
+ ω ·

(∫
Σ

p(x× n) ds+ I1/2θ

)
= m1/2ξ · (−J1p+ ζ) + I1/2ω · (−J3p+ θ) .

Since ξ, ω ∈ R3 are arbitrary, it follows that −J1p + ζ = −J3p + θ = 0. This
proves that Y⊥ ⊂ G. The proof of Theorem 3.1 is completed. �

4. Abstract B-evolution equation

4.1. Review of B-evolutions

In [12] and [13], Sauer developed the B-evolution theory to study the Sobo-
lev-Galpern type problem:

(9)


d

dt
[Bu](t) = Au(t) for t > 0,

Bu(0) = y,

where A and B are linear elliptic operators. In this subsection we review the
theory and apply it to our problem in the following subsections.

Let X and Y be Banach spaces and let B : X → Y be a linear operator with
domain D(B) ⊂ X and range R(B) ⊂ Y . Then by a B-evolution, we mean a
family {S(t)}t>0 of bounded linear operators from Y into X such that

S(t)[Y ] ⊂ D(B) for all t > 0

and

(10) S(t+ s) = S(s)BS(t) for all s, t > 0.

Let {S(t)}t>0 be a B-evolution. For each t > 0, we define

(11) E(t) := BS(t) : Y → Y.

Then {E(t)}t>0 is a semigroup of (possibly unbounded) linear operators on
Y , which is called the semigroup associated with the B-evolution {S(t)}t>0. It
follows from (10) and (11) that

(12) S(t+ s) = S(s)E(t) = S(t)E(s) for all s, t > 0.

If E(t) is a C0 semigroup, then S(t) is called strongly continuous.
The (infinitesimal) generator A of a B-evolution S(t) with domain D(A) is

defined in the following way: denote by D(A), the set of all x ∈ D(B) such
that the limit

Ax := lim
h→0+

BS(h)Bx−Bx
h

exists. Then D(A) is a subspace of X and A : D(A)→ Y is a linear operator.
Suppose that {E(t)}t>0 is a C0-semigroup of bounded linear operators on

Y with generator AY . Then it can be easily shown that for every y ∈ Y such
that E(·)y is differentiable on (0,∞), the function u = S(·)y is a solution of
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(9); in particular, if {E(t)}t>0 is an analytic semigroup, then the problem (9)
is solvable for every y ∈ Y . It is proved in [12, Theorem 2.1] that when S(t) is
a strongly continuous B-evolution,

(13) x ∈ D(A) if and only if Bx ∈ D(AY ) and Ax = AYBx for such x.

The following useful result is much inspired by Theorem 5.1 in [12].

Theorem 4.1. Let A and B be linear operators from X into Y such that B has
a bounded inverse and AB−1 generates a C0 semigroup {E(t)}t≥0. Then there
exists a unique B-evolution {S(t)}t>0 whose associated semigroup is {E(t)}t>0.
Moreover, A is the generator of {S(t)}t>0. Finally, for every y ∈ Y , u = S(·)y
is the unique solution of the abstract problem (9).

Proof. Let C : R(B)→ D(B) be the bounded inverse of B, so that

(14) BCy = y for all y ∈ R(B) and CBx = x for all x ∈ D(B).

Since AB−1 is the generator of a C0-semigroup {E(t)}t≥0, by the Hille-
Yosida theorem its domain D(AB−1) is dense in Y , therefore, so is R(B) since
D(AB−1) ⊂ R(B) clearly. Hence C can be extended uniquely to a bounded
linear operator from Y into X, denoted again by C. For each t > 0, define

S(t) = CE(t).

Then S(t) : Y → X is obviously bounded. Moreover, it follows E(t)[Y ] ⊂ R(B)
and BCE(t) = E(t) for each t > 0. This enables us to deduce that

S(t)[Y ] ⊂ D(B), BS(t) = BCE(t) = E(t)

and

S(t+ s) = CE(t+ s) = CE(t)E(s) = S(t) [BCE(s)] = S(t)BS(s)

for all s, t > 0. Hence {S(t)}t>0 is a B-evolution and its associated semigroup
is {E(t)}t>0.

If {S(t)}t>0 is a B-evolution and its associated semigroup is {E(t)}t>0, then
by (14), we have

S(t) = CBS(t) = CE(t) = S(t) for all t > 0,

which proves the uniqueness.
Next, let A be the generator of {S(t)}t>0. Then from the property of gen-

erators (13), it follows that x ∈ D(A) if and only if x ∈ D(B) and Bx ∈
D(AB−1) ⊂ R(B). This implies that if x ∈ D(A), then Bx ∈ D(AB−1) and

Ax = lim
h→0+

E(h)Bx−Bx
h

= (AB−1)Bx = Ax,

therefore, x ∈ D(A), that is, D(A) ⊂ D(A).
For x ∈ D(A), one has that Bx ∈ D(AB−1) and

Ax = (AB−1)Bx = lim
h→0+

E(h)Bx−Bx
h

,



HELMHOLTZ DECOMPOSITION TO FLUID AROUND MOVING BODY 669

which is Ax since the left side value converges. This implies that D(A) = D(A),
therefore, A is the generator of S(t).

To complete the proof, let y ∈ Y be given. Then obviously u = S(·)y is a
solution of (9). Let u : (0,∞)→ D(B) ⊂ X be another solution of (9). Define
v : (0,∞) → R(B) ⊂ Y by v(t) = Bu(t) for t > 0. Then it follows from (14)
that Cv(t) = CBu(t) = u(t) for t > 0. Hence v satisfies

d

dt
v(t) = (AB−1)v(t) for t > 0

v(t)→ y as t→ 0+.

Since AB−1 is the generator of a C0-semigroup {E(t)}t≥0, it follows from the
semigroup theory that v(t) = E(t)y and so u(t) = Cv(t) = CE(t)y = S(t)y =
u(t) for all t > 0. The proof of Theorem 4.1 is complete. �

In the above, if D(A) = D(B), then D(AB−1) = R(B).

4.2. Abstract formulation of our problem

Recall that [ξ(·), ω(·)] is a linear operator from Φσ into R3 × R3 such that
φ = ξ(φ) + ω(φ)×x in a neighborhood of Ωc. It was shown in [4, Lemma 4.9]
that there is a constant C = C(B) > 0 such that

(15) |ξ(φ)|+ |ω(φ)| ≤ C‖D(φ)‖L2

for all φ ∈ Φσ. Let H1
σ(Ω) be the closure of Φσ in the standard Sobolev space

W 1,2
loc (Ω) in the norm ‖D(·)‖L2 . Then by the inequality (15), [ξ(·), ω(·)] can

be extended uniquely to a bounded linear operator from H1
σ(Ω) into R3 × R3,

denoted still by [ξ(·), ω(·)]. Let us also extend K to H1
σ(Ω) by defining

Ku = [u,m1/2ξ(u), I1/2ω(u)] for all u ∈ H1
σ(Ω).

Since K : H1
σ(Ω)→ Y0 = L2(Ω)× R3 × R3 is bounded and Y is the closure of

K (Φσ) in Y0, it follows that K
[
H1
σ(Ω)

]
⊂ Y.

Lemma 4.2.

H1
σ(Ω) =

{
u ∈W 1,2

loc (Ω) ∩ L6(Ω) : D(u) ∈ L2(Ω), ∇ · u = 0 in Ω,

u|Σ = ξ + ω × x for some ξ, ω ∈ R3
}
.

Proof. For the proof, refer to the proof of [4, Lemma 4.11]. �

Now let A and B be linear operators with common domain

D := H1
σ(Ω) ∩W 2,2(Ω) ⊂ X ⊂ L2(Ω)

with values in Y, defined by

Av := P[∆v,J2v,J4v] and Bv := Kv for v ∈ D,
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where the orthogonal projection P is defined in Section 3. Then, for u(t) ∈
D = H1

σ(Ω) ∩W 2,2(Ω), the problem (5)–(6) can be rewritten in the abstract
form

(16)
∂t[Bu] = Au,

Bu(0) = Bu0,

where u0(x) = ξ0 + ω0 × x for x ∈ Σ.
We shall show that Sauer’s theory of B-evolutions is applicable.

Lemma 4.3. For all u, v ∈ H1
σ(Ω), we have

2〈D(u), D(v)〉L2 = 〈∇u,∇v〉L2 + 4|B|ω(u) · ω(v).

Proof. By density, we may assume that u, v ∈ Φσ. Then by a direct calculation,

2〈D(u), D(v)〉L2 = 〈∇u,∇v〉L2 + 2

∫
Ω

∂i(uj∂jvi)dx

= 〈∇u,∇v〉L2 + 2

∫
Σ

(uj∂jvi)nids.

But since u = uΣ = ξ(u) + ω(u)× x and v = vΣ = ξ(v) + ω(v)× x near B, we
have ∫

Σ

(uj∂jvi)nids = −
∫
B
∂i(uΣ)j∂j(vΣ)idx = 2|B|ω(u) · ω(v).

This completes the proof of Lemma 4.3. �

Lemma 4.4. For all u ∈ H1
σ(Ω) ∩W 2,2(Ω) and v ∈ H1

σ(Ω), we have

〈−Au,Bv〉Y = 〈D(u), D(v)〉L2(Ω).

Proof. Since B = K : H1
σ(Ω)→ Y, it follows that

〈−Au,Bv〉Y = 〈−P[∆u,J2u,J4u],Kv〉Y0

= 〈−[∆u,J2u,J4u], [v,m1/2ξ(v), I1/2ω(v)]〉Y0

= −
∫

Ω

∆u · v + ξ(v) ·
∫

Σ

D(u) · n+ ω(v) ·
∫

Σ

x× (D(u) · n)

= −
∫

Ω

∇ ·D(u) · v +

∫
Σ

(ξ(v) + ω(v)× x) · (D(u) · n).

By the divergence theorem, we thus have

〈−Au,Bv〉Y = 〈D(u), D(v)〉L2(Ω) −
∫

Σ

v · (D(u) · n)

+

∫
Σ

(ξ(v) + ω(v)× x) · (D(u) · n)

= 〈D(u), D(v)〉L2(Ω).

The proof of Lemma 4.4 is completed. �

Lemma 4.5. The range R(B) of B is dense in Y, B has a bounded inverse,
and A is a closed operator.
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Proof. Since K[Φσ] ⊂ K[H1
σ(Ω)] ⊂ R(B) and K[Φσ] is dense in Y, it follows

immediately that R(B) is dense in Y. Moreover, B is obviously injective and
satisfies

‖Bu‖Y = ‖u‖L2 +m1/2|ξ(u)|+ I1/2|ω(u)| ≥ ‖u‖L2

for all u ∈ H1
σ(Ω) ∩W 2,2(Ω). Hence, B has a bounded inverse. To show that

A is closed, it suffices to show that

(17) ‖u‖W 1,2(Ω) ≤ C
(
‖Au‖Y + ‖u‖L2(Ω)

)
for all u ∈ H1

σ(Ω) ∩W 2,2(Ω). Let u ∈ H1
σ(Ω) ∩W 2,2(Ω) be given. Then by

Lemmas 4.3 and 4.4, we have

‖∇u‖2L2(Ω) ≤ 〈−Au,Bu〉Y ≤ ‖Au‖Y‖Bu‖Y.

Since B maps H1
σ(Ω) into Y boundedly, we also have

‖∇u‖2L2(Ω) ≤ C‖Au‖Y‖u‖W 1,2(Ω)

and so
‖u‖W 1,2(Ω) ≤ C

(
‖Au‖Y + ‖u‖L2(Ω)

)
.

Moreover, by Theorem 3.1, there exists p ∈ D1,2(Ω) such that

−[∆u,J2u,J4u] = [w, ζ, θ] + [∇p,J1p,J3p],

where [w, ζ, θ] = −Au ∈ Y. This implies in particular that (u, p) ∈ W 2,2(Ω)×
W 1,2(Ω) is a strong solution of the exterior Stokes problem:

−∆u−∇p = w, ∇ · u = 0 in Ω, u = uΣ on Σ,

where uΣ(x) = ξ(u) + ω(u) × x. Hence using the standard estimate (see [3]
e.g.), we obtain

‖∇2u‖L2(Ω) ≤ C
(
‖w‖L2(Ω) + ‖uΣ‖W 3/2,2(Σ)

)
.

Finally, by (15), we have

‖uΣ‖W 3/2,2(Σ) ≤ C (|ξ(u)|+ |ω(u)|) ≤ C‖u‖W 1,2(Ω),

where C depends on |B|, which proves (17). The proof of Lemma 4.5 is com-
pleted. �

Lemma 4.6. The operator AB−1 generates an analytic semigroup {E(t)}t≥0

on Y.

Proof. By Lemma 4.5, AB−1 is a closed linear operator in Y with dense domain.
Hence to prove the lemma, it remains to obtain the resolvent estimates for
AB−1. Let λ ∈ C be given. Then for F ∈ R(B), let us consider

Q = 〈(λIY −AB−1)F, F 〉Y = λ‖F‖2Y − 〈AB−1F, F 〉Y.
Setting u = B−1F ∈ H1

σ(Ω) ∩W 2,2(Ω) and using Lemma 4.4, we have

〈−AB−1F, F 〉Y = 〈−Au,Bu〉Y = ‖D(u)‖2L2(Ω) ≥ 0.

Hence, following the proof of Proposition 7.3 in [12], we can complete the proof
of Lemma 4.6. �
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By combining lemmas in this subsection and Theorem 4.1, we conclude that
the problem (16) has a unique analytic solution.

Theorem 4.7. There exists a unique B-evolution S(t), of which associated
semigroup E(t) is analytic. Furthermore, there is a unique solution to the
problem (16).

5. Fractional power of operators

In this section, for our future analysis on the interaction of Navier-Stokes
fluid and the rigid body, we study the B-evolution S(t) more explicitly and
fractional powers of the operators A,B for future analysis of Navier-Stokes
type system (16). For that, we again consider the linearized system of (16)

(18)
∂tBv = Av,

Bv(0) = y

for y ∈ Y.
As in [12] and [7], since E(t) is analytic, the operator pair {−A,B} generates

an analytic B-evolution S(t) which has a contour integral representation

S(t)y =
1

2πi

∫
Γ

eλt(λB −A)−1ydλ,

for y ∈ Y, where Γ is any piecewise smooth curve going from ∞e−i(π2 +δ′) to
∞ei(π2 +δ′) for some δ′ ∈ (0, δ) in Λπ

2 +δ ≡ {λ ∈ C : | arg λ| < π
2 + δ} \ {0} for

some 0 < δ ≤ π
2 , which is contained in the resolvent set ρ(−AB−1). Refer also

to Pazy [10]. Furthermore, S(t) is uniformly bounded. The system (18) with
initial data y is uniquely solvable for any y ∈ Y, and the solution is represented
as v(t) = S(t)y.

Like [6], for 0 < α ≤ 1, B−α is defined by

B−αy :=
1

Γ(α)
lim
n→∞

∫ ∞
0

ne−nsS(s)(ns)α−1yds for all y ∈ Y,

where Γ(α) is the Gamma function. Let Λδ ⊂ ρ(−AB−1) be the union of the
open sector {λ ∈ C : 0 < δ < | arg λ| ≤ π} and a neighbourhood of zero, where
ρ(−A) is the resolvent set of −A such that R+ ⊂ Λδ ⊂ ρ(−AB−1).

Define the fractional power of −A in the way that for 0 < α < 1,

(−A)−αy := − 1

2πi
B−α

∫
Γ

λ−αB(λB +A)−1ydλ,

for all y ∈ Y, where Γ is a piecewise smooth path in Λδ going from ∞e−iθ to
∞eiθ for some δ < θ < π, avoiding the negative real axis and the origin. Let a
and θ be positive real numbers. Let Γ be the path consisting of the half-lines
going from ∞e−iθ to a and from a to ∞eiθ. Then,

(−A)−αy = − 1

2πi
B−α

[ ∫ ∞
0

(seiδ + a)−αB
(
(seiδ + a)B +A

)−1
eiδyds
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−
∫ ∞

0

(se−iδ + a)−αB
(
(se−iδ + a)B +A

)−1
e−iδyds

]
.

Notice that symbolically,

(seiθ)−α
(
seiθB +A

)−1
eiθ − (se−iθ)−α

(
se−iθB +A

)−1
e−iθ

= s−α
[
sB(e−iθα−eiθα)+A(e−iθα+iθ−eiθα−iθ)

](
seiθB+A

)−1(
se−iθB+A

)−1

→ s−α2i sin(πα)(−sB +A)
(
− sB +A

)−1(− sB +A
)−1

= s−α2i sin(πα)
(
− sB +A

)−1

as θ → π. Hence, taking a↘ 0 and θ ↗ π, we obtain

(−A)−αy =
sin(πα)

π
B−α

∫ ∞
0

λ−αB(λB −A)−1ydλ,

or

A−αy = (−1)α
sin(πα)

π
B−α

∫ ∞
0

λ−αB(λB −A)−1ydλ.

Since B(λB − A)−1y =
∫∞

0
e−λtBS(t)ydt for all y ∈ Y (refer to [12]), we

obtain

A−αy = (−1)α
sin(πα)

π
B−α

∫ ∞
0

λ−α
(∫ ∞

0

e−λtBS(t)ydt
)
dλ

= (−1)α
sin(πα)

π
B−α

∫ ∞
0

BS(t)y
(∫ ∞

0

e−λtλ−αdλ
)
dt

= (−1)α
sin(πα)

π
B−α

∫ ∞
0

BS(t)y
(∫ ∞

0

e−λλ−αdλ
)
tα−1dt.

Owing to Euler’s reflection formula

Γ(1− α) ≡
∫ ∞

0

e−ss−αds =
π

sin(πα)

1

Γ(α)
,

we have

A−αy = (−1)α
1

Γ(α)
B−α

∫ ∞
0

tα−1BS(t)ydt.

Here, Γ(α) is the Gamma function.
Therefore, we have the following result.

Proposition 5.1. The fractional power A−α (0 < α ≤ 1) is defined by

A−αy = (−1)α+1 1

2πi
B−α

∫
Γ

λ−αB(λB +A)−1ydλ

= (−1)α
sin(πα)

π
B−α

∫ ∞
0

λ−αB(λB −A)−1ydλ

= (−1)α
1

Γ(α)
B−α

∫ ∞
0

tα−1BS(t)ydt

for all y ∈ Y.
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The partial fraction of A, Aα is defined by (A−α)−1. The closedness of the
pairs {Aα, Bα} and {AαB−αB,B} can be proved in the same way in [7]. The
following property can be shown in the same way in [7].

Proposition 5.2. For u ∈ D,

‖A1/2B−1/2Bu‖2 = 〈−Au,Bu〉 =
1

2
‖∇u‖L2 + 2|B| |ω(u)|2.

Theorem 5.3. For all y ∈ Y,

‖BS(t)y‖ ≤ c‖y‖.

Proof. Setting v = Sy for y ∈ Y, we have

〈∂tBv,Bv〉 = 〈Av,Bv〉,

∂t‖Bv‖2 = −‖A1/2B−1/2Bv‖2 ≤ 0,

hence, we have ‖Bv‖ ≤ c‖y‖. �

Proposition 5.4.

‖A1/2B−1/2BS(t)y‖ ≤ ct−1/2‖y‖.

Proof. Since

‖A1/2B−1/2Bv‖2 = 〈−Av,Bv〉Y0 ≤ ‖Av‖ ‖Bv‖,
we have

〈∂tBv,−Av〉 − 〈Av,−Av〉 = 0,

〈∂t(−A)1/2B−1/2Bv, (−A)1/2B−1/2Bv〉+ 〈Au,Au〉 = 0,

∂t‖A1/2B−1/2Bv‖2 + 2‖Bv‖−2 ‖A1/2B1−2/Bv‖4 ≤ 0,

where v = S(t)y. Setting Y = ‖A1/2B−1/2Bv‖2, we have

∂tY + c‖Bv‖−2Y 2 ≤ 0,

dY

Y 2
≤ −c‖Bv‖−2dt,

−Y −1(t) + Y −1(0) ≤ −c‖Bv‖−2t,

‖A1/2B−1/2Bv(t)‖ ≤ c‖Bv‖t−1/2 ≤ ct−1/2‖y‖. �

Proposition 5.5.

‖AB−1BS(t)y‖ ≤ ct−1‖y‖.

Proof. Since

‖Av‖2 = 〈A3/2B−3/2Bv,A1/2B−1/2Bv〉Y0

≤ ‖A3/2B−3/2Bv‖ ‖A1/2B−1/2Bv‖

≤ ct−1/2‖y‖ ‖A3/2B−3/2Bv‖,
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we have

〈∂tBv,A2B−2Bv〉+ 〈−Av,A2B−2Bv〉 = 0,

2〈∂tAv,Av〉+ 〈(−A)3/2B−3/2Bu, (−A)3/2B−3/2Bu〉 = 0,

∂t‖Av‖2 + ct‖y‖−2 ‖Av‖4 ≤ 0,

where v = S(t)y. In the same way as above, we can complete the proof. �

Theorem 5.6. Suppose that for 0 < α ≤ 1,

‖AαB−αBS(t)y‖ ≤ ct−α‖y‖.

Then we have that

‖Aα/2B−α/2BS(t)y‖ ≤ ct−α/2‖y‖.

Proof.

‖Aα/2B−α/2Bv‖2 = 〈(−A)αB−αBv,Bv〉Y0
≤ ‖AαB−αBv‖ ‖Bv‖ ≤ ct−α‖y‖2.

�
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