
Bull. Korean Math. Soc. 57 (2020), No. 3, pp. 607–622

https://doi.org/10.4134/BKMS.b190391

pISSN: 1015-8634 / eISSN: 2234-3016

ON THE CONVERGENCE OF SERIES FOR ROWWISE SUMS

OF NEGATIVELY SUPERADDITIVE DEPENDENT RANDOM

VARIABLES

Haiwu Huang and Qingxia Zhang

Abstract. In the paper, some probability convergence properties of se-
ries for rowwise sums of negatively superadditive dependent (NSD) ran-

dom variables are discussed. We establish some sharp results on these

convergence for NSD random variables under some general settings, which
generalize and improve the corresponding ones of some known literatures.

1. Introduction

Existing methods and algorithms appeared in some literatures assume that
variables are independent, but in the real world, that is not always satisfied, in
most cases they are dependent. Dependent structures play an important role in
all areas of computational and applied mathematics, such as the computational
efficiency (e.g., the convergence, stability, accuracy, . . .) for solving scientific
or engineering problems. Therefore, many statisticians have proposed several
kinds of dependent structures in order to some specific practical problems, such
as negatively associated (NA) random variables, negatively orthant dependent
(NOD) random variables, extended negatively dependent (END) random vari-
ables, negatively superadditive dependent (NSD) random variables, and many
others. In the following, we will recall the concept of NSD structures, which is
weaker than NA.

Definition 1.1. A function φ: Rn → R is called superadditive if φ (x∨ y) +
φ (x ∧ y) ≥ φ (x) + φ (y) for all x, y ∈ Rn, where ∨ stands for componentwise
maximum and ∧ stands for componentwise minimum.

Based on the class of superadditive functions introduced by Kemperman
[12], Hu [9] introduced the following concept of NSD random variables.

Definition 1.2. A random vector X = (X1, X2, . . . , Xn) is said to be NSD if

(1.1) Eφ (X1, X2, . . . , Xn) ≤ Eφ (X∗1 , X
∗
2 , . . . , X

∗
n) ,
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where X∗1 , X
∗
2 , . . . , X

∗
n are independent such that X∗i and Xi have the same dis-

tribution for each i and φ is a superadditive function such that the expectations
in (1.1) exist.

A sequence of random variables {Xn;n ≥ 1} is said to be NSD if for all
n ≥ 1, (X1, X2, . . . , Xn) is NSD.

An array of random variables {Xni; 1 ≤ i ≤ n, n ≥ 1} is called rowwise NSD
if for all n ≥ 1, {Xni; 1 ≤ i ≤ n} is NSD.

As a matter of fact, Hu [9] gave an example for illustrating that NSD does
not imply NA (introduced by Alam and Saxena [1], carefully studied by Joag-
Dev and Proschan [11]), and posed an open problem whether NA implies NSD.
Furthermore, Hu [9] provided some basic properties of NSD random variables.
Christofides and Vaggelatou [3] solved this open problem and indicated that
NA implies NSD. Therefore, NSD structure is an extension of NA structure
and sometimes more useful than the latter in probability theory and mathe-
matical statistics. Consequently, investigating the convergence properties of
NSD random variables is of much significance.

Since the concept of NSD random variables introduced by Hu [9], many
applications have been found in various aspects by many authors. Eghbal et
al. [5] for two maximal inequalities and a strong law of large numbers of qua-
dratic forms of nonnegative NSD random variables. Eghbal et al. [6] for some
Kolmogorov inequalities for quadratic forms and weighted quadratic forms of
nonnegative and uniformly bounded NSD random variables. Shen et al. [15]
for the almost sure convergence and strong stability for weighted sums of NSD
random variables. Wang et al. [18] for the complete convergence of arrays of
rowwise NSD random variables and the complete consistency for the estimator
of nonparametric regression model based on NSD errors. Naderi et al. [14] for
the rate of complete convergence for weighted sums of NSD random variables.
Wang et al. [19] for the complete convergence of NSD random variables and its
application in the EV regression model. Shen et al. [17] for some applications of
the Rosenthal-type inequality for NSD random variables, Shen et al. [16], Deng
et al. [4], Meng et al. [13] for some strong convergence properties for weighted
sums of NSD random variables. Wu et al. [22] for an exponential inequality
and the general results on the complete convergence, Wang et al. [20] for some
strong laws of large numbers of NSD random variables and the strong consis-
tency and weak consistency of the LS estimators in the EV regression model
with NSD errors, among others.

For a triangular array of rowwise random variables {Xni; 1 ≤ i ≤ n, n ≥ 1},
let {an;n ≥ 1} be a sequence of positive real numbers with an ↑ ∞. Suppose
that {ψn(t), n ≥ 1} is a sequence of nonnegative even functions such that

(1.2)
ψn (|t|)
|t|q

↑ and
ψn(|t|)
|t|p

↓ as |t| ↑

for some 1 ≤ q < p.
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Introduced the assumptions as follows

(1.3) EXni = 0, 1 ≤ i ≤ n, n ≥ 1,

(1.4)

∞∑
n=1

n∑
i=1

Eψi (Xni)

ψi (an)
<∞,

(1.5)

∞∑
n=1

(
n∑

i=1

E|Xni|r

arn

)s

<∞,

where 0 < r ≤ 2 and s > 0.
Based on the above conditions (1.2)-(1.5), there are some articles for in-

vestigating the convergence properties for independent and dependent random
variables. For example, Hu and Taylor [10], Wu [21], Wu and Zhu [23], among
others. Especially, Gan and Chen [7] established some complete convergence
results for weighted sums of NA random variables under the cases 1 < p ≤ 2
and p > 2 with q = 1.

In this paper, our main purpose is to investigate the convergence properties
of series for rowwise sums of NSD random variables. We establish some sharp
results of the complete convergence, the complete moment convergence and the
mean convergence of series for rowwise sums of NSD random variables under
some mild conditions. Compared with the corresponding ones of Gan and Chen
[7], it is worthy pointing out that the conditions in this paper are more general
and the results obtained are stronger.

Throughout this paper, let I (A) be the indicator function of the set A. C
denotes a generic positive constant, whose value may be different in various
places, and an = O (bn) stands for an ≤ Cbn. [x] stands for the integer part of
x.

2. Main results

The concept of complete convergence was firstly introduced by Hsu and
Robbins [8] as follows: A sequence of random variables {Xn;n ≥ 1} is said
to converge completely to a constant λ if

∑∞
n=1 P (|Xn − λ| > ε) < ∞ for all

ε > 0. In view of the Borel-Cantelli lemma, this implies that Xn → λ almost
surely (a.s.). The complete convergence plays an important role in establishing
almost sure convergence of random variables.

Subsequently, Chow [2] generalized this notion by showing the following
concept of complete moment convergence: Let {Zn;n ≥ 1} be a sequence of

random variables, and an > 0, bn > 0, q > 0. If
∑∞

n=1 anE
(
b−1n |Zn| − ε

)q
+
<

∞ for all ε ≥ 0, then {Zn;n ≥ 1} is said to be in the sense of complete moment
convergence. It is well known that the complete moment convergence implies
the complete convergence.

In these five theorems, suppose that {Xni; 1 ≤ i ≤ n, n ≥ 1} is an array of
rowwise NSD random variables. Let {an;n ≥ 1} be a sequence of positive real
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numbers with an ↑ ∞, and let {ψn(t), n ≥ 1} be a sequence of nonnegative
even functions such that (1.2) for some q and p to be specified in each theorem
separately (of course, q < p). The main results are presented in this section,
and the proofs will be detailed in next section.

Theorem 2.1. If 1 ≤ q < p ≤ 2, then assumptions (1.3) and (1.4) imply

(2.1)

∞∑
n=1

P

(
max
1≤j≤n

∣∣∣∣∣
j∑

i=1

Xni

∣∣∣∣∣ > εan

)
<∞ for ∀ε > 0.

Theorem 2.2. If 1 ≤ q < p and p > 2, then assumptions (1.3), (1.4) and (1.5)
imply (2.1).

Theorem 2.3. If 1 ≤ q < p ≤ 2, then assumptions (1.3) and (1.4) imply

(2.2)

∞∑
n=1

a−qn E

(
max
1≤j≤n

∣∣∣∣∣
j∑

i=1

Xni

∣∣∣∣∣− εan
)q

+

<∞ for ∀ε > 0.

Theorem 2.4. If 1 ≤ q < p and p > 2, then assumptions (1.3), (1.4) and (1.5)
imply (2.2).

Theorem 2.5. Let 1 ≤ q < p.
(1) If 1 < p ≤ 2, then assumption

(2.3)

n∑
i=1

Eψi (Xni)

ψi (an)
→ 0 as n→∞

implies

(2.4)
1

an
max
1≤j≤n

∣∣∣∣∣
j∑

i=1

Xni

∣∣∣∣∣ Lq−−→ 0.

(2) If p > 2, then assumptions (2.3) and

(2.5)

n∑
i=1

E|Xni|r

arn
→ 0 as n→∞, where 0 < r ≤ 2

imply (2.4).

Remark 2.1. Since the class of NSD random variables contains independent
random variables and NA random variables, these obtained theorems also hold
for independent random variables and NA random variables. Taking q = 1 in
(1.2), the conditions of Theorem 2.1 or 2.2 are the same as those of Gan and
Chen [7]. In addition, the result (2.2) of Theorem 2.3 or 2.4 is more stronger
than the corresponding (2.1) of Theorem 2.1 or 2.2 under the same conditions.
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3. Proofs

To prove the main results, we need the following important lemmas.

Lemmas 3.1 ([9]). If (X1, X2, . . . , Xn) is NSD and f1, f2, . . . , fn are all non-
decreasing functions, then f1 (X1) , f2 (X2) , . . . , fn (Xn) are NSD.

Lemmas 3.2 ([9,15]). Let M > 1, {Xn;n ≥ 1} be a sequence of NSD random

variables with E|Xn|M <∞ for each n ≥ 1. Then for all n ≥ 1,

(3.1) E

 max
1≤j≤n

∣∣∣∣∣
j∑

i=1

Xi

∣∣∣∣∣
M
 ≤ 23−M

n∑
i=1

E|Xi|M for 1 < M ≤ 2,

E

 max
1≤j≤n

∣∣∣∣∣
j∑

i=1

Xi

∣∣∣∣∣
M
(3.2)

≤ 2

(
15M

lnM

)M
 n∑

i=1

E|Xi|M +

(
n∑

i=1

EX2
i

)M/2
 for M > 2.

Proof of Theorem 2.1. For fixed n ≥ 1 and all 1 ≤ i ≤ n, define Yni =
−anI (Xni < −an) + XniI (|Xni| ≤ an) +anI (Xni > an), Zni = Xni − Yni. It
is easily seen that for ∀ε > 0,

P

(
max
1≤j≤n

∣∣∣∣∣
j∑

i=1

Xni

∣∣∣∣∣ > εan

)

≤ P

((
max
1≤j≤n

∣∣∣∣∣
j∑

i=1

Yni

∣∣∣∣∣ > εan

)⋃(
n⋃

i=1

(|Xni| > an)

))

≤ P

(
max
1≤j≤n

∣∣∣∣∣
j∑

i=1

(Yni − EYni)

∣∣∣∣∣ > εan − max
1≤j≤n

∣∣∣∣∣
j∑

i=1

EYni

∣∣∣∣∣
)

+ P

(
n⋃

i=1

(|Xni| > an)

)
.

Firstly, one will prove that

(3.3)
1

an
max
1≤j≤n

∣∣∣∣∣
j∑

i=1

EYni

∣∣∣∣∣→ 0 as n→∞.

Note that |Zni| ≤ |Xni| I (|Xni| > an) for fixed n ≥ 1 and all 1 ≤ i ≤ n. By
(1.3), (1.4) and q > 1, one has that

1

an
max
1≤j≤n

∣∣∣∣∣
j∑

i=1

EYni

∣∣∣∣∣ =
1

an
max
1≤j≤n

∣∣∣∣∣
j∑

i=1

EZni

∣∣∣∣∣
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≤ C
n∑

i=1

E |Xni| I (|Xni| > an)

an

≤ C
n∑

i=1

E|Xni|qI (|Xni| > an)

aqn

≤ C
n∑

i=1

Eψi (Xni)

ψi (an)
→ 0 as n→∞.(3.4)

Hence for n large enough,

P

(
max
1≤j≤n

∣∣∣∣∣
j∑

i=1

Xni

∣∣∣∣∣ > εan

)
≤ P

(
max
1≤j≤n

∣∣∣∣∣
j∑

i=1

(Yni − EYni)

∣∣∣∣∣ > εan
2

)

+

n∑
i=1

P (|Xni| > an).

To prove (2.1), it suffices to show that

(3.5) I1
.
=

∞∑
n=1

P

(
max
1≤j≤n

∣∣∣∣∣
j∑

i=1

(Yni − EYni)

∣∣∣∣∣ > εan
2

)
<∞,

(3.6) I2
.
=

∞∑
n=1

n∑
i=1

P (|Xni| > an) <∞.

For I1, it follows that {Yni − EYni; 1 ≤ i ≤ n, n ≥ 1} is still an array of rowwise
NSD random variables with zero mean by Lemma 3.1. Note that |Yni| ≤ an
a.s.. For 1 ≤ q < p ≤ 2, by the Markov inequality (for 1 < p ≤ M ≤ 2), (3.1)
and (1.4), one has that

I1 ≤ C
∞∑

n=1

1

aMn
E

 max
1≤j≤n

∣∣∣∣∣
j∑

i=1

(Yni − EYni)

∣∣∣∣∣
M


≤ C
∞∑

n=1

1

aMn

n∑
i=1

E|Yni − EYni|M

≤ C
∞∑

n=1

n∑
i=1

E|Yni|p

apn

≤ C
∞∑

n=1

n∑
i=1

Eψi (|Yni|)
ψi (an)

≤ C
∞∑

n=1

n∑
i=1

Eψi (Xni)

ψi (an)
<∞.(3.7)
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For I2, by some standard computations and q ≥ 1, one has

I2 =

∞∑
n=1

n∑
i=1

EI (|Xni| > an)

≤ C
∞∑

n=1

n∑
i=1

E|Xni|qI (|Xni| > an)

aqn

≤ C
∞∑

n=1

n∑
i=1

Eψi (Xni)

ψi (an)
<∞.(3.8)

The proof of Theorem 2.1 is completed. �

Proof of Theorem 2.2. In view of the proof of Theorem 2.1, following the same
notation, (3.3) and I2 <∞ hold. It suffices to show that I1 <∞ for 1 ≤ q < p
and p > 2. Note that |Yni| ≤ |Xni| and |Yni| ≤ an a.s.. Take 0 < r ≤ 2 and
s > 0. By the Markov inequality (for M = p > 2 and p > 2s), (3.2), the cr
inequality, (1.4) and (1.5),

I1 ≤ C
∞∑

n=1

1

apn
E

(
max
1≤j≤n

∣∣∣∣∣
j∑

i=1

(Yni − EYni)

∣∣∣∣∣
p)

≤ C
∞∑

n=1

1

apn

 n∑
i=1

E|Yni − EYni|p +

(
n∑

i=1

E(Yni − EYni)2
)p/2


≤ C

∞∑
n=1

n∑
i=1

E|Yni|p

apn
+ C

∞∑
n=1

(
n∑

i=1

E|Yni|2

a2n

)p/2

≤ C
∞∑

n=1

n∑
i=1

E|Xni|p

apn
+ C

∞∑
n=1

(
n∑

i=1

E|Xni|r

arn

)p/2

≤ C
∞∑

n=1

n∑
i=1

Eψi (Xni)

ψi (an)
+ C

( ∞∑
n=1

(
n∑

i=1

E|Xni|r

arn

)s)p/2s

<∞.(3.9)

The proof of Theorem 2.2 is completed. �

Proof of Theorem 2.3. For ∀ε > 0 and all t ≥ 0, noting that

∞∑
n=1

a−qn E

(
max
1≤j≤n

∣∣∣∣∣
j∑

i=1

Xni

∣∣∣∣∣− εan
)q

+

=

∞∑
n=1

a−qn

∫ ∞
0

P

(
max
1≤j≤n

∣∣∣∣∣
j∑

i=1

Xni

∣∣∣∣∣− εan > t1/q

)
dt

=

∞∑
n=1

a−qn

∫ aq
n

0

P

(
max
1≤j≤n

∣∣∣∣∣
j∑

i=1

Xni

∣∣∣∣∣ > εan + t1/q

)
dt
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+

∞∑
n=1

a−qn

∫ ∞
aq
n

P

(
max
1≤j≤n

∣∣∣∣∣
n∑

i=1

Xni

∣∣∣∣∣ > εan + t1/q

)
dt

≤
∞∑

n=1

P

(
max
1≤j≤n

∣∣∣∣∣
j∑

i=1

Xni

∣∣∣∣∣ > εan

)

+

∞∑
n=1

a−qn

∫ ∞
aq
n

P

(
max
1≤j≤n

∣∣∣∣∣
n∑

i=1

Xni

∣∣∣∣∣ > t1/q

)
dt

.
= I3 + I4.(3.10)

According to the proof of Theorem 2.1, the result I3 <∞ holds. To prove (2.2),
it needs only to show that I4 < ∞. For fixed n ≥ 1, 1 ≤ i ≤ n and all t ≥ 0,
define Y t

ni = −t1/qI
(
Xni < −t1/q

)
+ XniI

(
|Xni| ≤ t1/q

)
+t1/qI

(
Xni > t1/q

)
,

Zt
ni = Xni − Y t

ni. It easily follows that

P

(
max
1≤j≤n

∣∣∣∣∣
j∑

i=1

Xni

∣∣∣∣∣ > t1/q

)

≤ P

(
max
1≤j≤n

∣∣∣∣∣
j∑

i=1

Y t
ni

∣∣∣∣∣ > t1/q

)
+ P

(
n⋃

i=1

(
|Xni| > t1/q

))

≤ P

(
max
1≤j≤n

∣∣∣∣∣
j∑

i=1

Y t
ni

∣∣∣∣∣ > t1/q

)
+

n∑
i=1

P
(
|Xni| > t1/q

)
,(3.11)

which implies

I4 ≤
∞∑

n=1

a−qn

∫ ∞
aq
n

P

(
max
1≤j≤n

∣∣∣∣∣
j∑

i=1

Y t
ni

∣∣∣∣∣ > t1/q

)
dt

+

∞∑
n=1

a−qn

n∑
i=1

∫ ∞
aq
n

P
(
|Xni| > t1/q

)
dt

.
= I5 + I6.(3.12)

For I6, by some standard computations and (1.4),

I6 ≤ C
∞∑

n=1

a−qn

n∑
i=1

∫ ∞
0

P
(
|Xni| I (|Xni| > an) > t1/q

)
dt

≤ C
∞∑

n=1

a−qn

n∑
i=1

E|Xni|qI (|Xni| > an)

≤ C
∞∑

n=1

n∑
i=1

Eψi (Xni)

ψi (an)
<∞.(3.13)

By an argument similar to that in the proof of (3.3), one has

(3.14) max
t≥aq

n

1

t1/q
max
1≤j≤n

∣∣∣∣∣
j∑

i=1

EY t
ni

∣∣∣∣∣→ 0 as n→∞.
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Hence for n is sufficiently large, max
1≤j≤n

∣∣∣∣ j∑
i=1

EY t
ni

∣∣∣∣ ≤ t1/q

2 holds uniformly for all

t ≥ aqn, which implies

(3.15) P

(
max
1≤j≤n

∣∣∣∣∣
j∑

i=1

Y t
ni

∣∣∣∣∣ > t1/q

)
≤ P

(
max
1≤j≤n

∣∣∣∣∣
j∑

i=1

(
Y t
ni − EY t

ni

)∣∣∣∣∣ > t1/q

2

)
.

For I5, let dn = [an] + 1. By (3.15), the Markov inequality, (3.1) and the cr
inequality, one has that for 1 ≤ q < p ≤ 2,

I5 ≤
∞∑

n=1

a−qn

∫ ∞
aq
n

P

(
max
1≤j≤n

∣∣∣∣∣
j∑

i=1

(
Y t
ni − EY t

ni

)∣∣∣∣∣ > t1/q

2

)
dt

≤ C

∞∑
n=1

a−qn

∫ ∞
aq
n

t−2/qE

 max
1≤j≤n

∣∣∣∣∣
j∑

i=1

(
Y t
ni − EY t

ni

)∣∣∣∣∣
2
 dt

≤ C

∞∑
n=1

n∑
i=1

a−qn

∫ ∞
aq
n

E
∣∣Y t

ni

∣∣2t−2/qdt
= C

∞∑
n=1

n∑
i=1

a−qn

∫ ∞
aq
n

EX2
niI (|Xni| ≤ dn) t−2/qdt

+ C

∞∑
n=1

n∑
i=1

a−qn

∫ ∞
aq
n

EX2
niI
(
dn < |Xni| ≤ t1/q

)
t−2/qdt

+ C

∞∑
n=1

n∑
i=1

a−qn

∫ ∞
aq
n

P
(
|Xni| > t1/q

)
dt

.
= I51 + I52 + I53.(3.16)

For I51, one has

I51 = C

∞∑
n=1

n∑
i=1

a−qn EX2
niI (|Xni| ≤ dn)

∫ ∞
aq
n

t−2/qdt

≤ C

∞∑
n=1

n∑
i=1

EX2
niI (|Xni| ≤ dn)

a2n

= C

∞∑
n=1

n∑
i=1

EX2
niI (|Xni| ≤ an)

a2n

+ C

∞∑
n=1

n∑
i=1

EX2
niI (an < |Xni| ≤ dn)

a2n

≤ C

∞∑
n=1

n∑
i=1

E|Xni|pI (|Xni| ≤ an)

apn
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+ C

∞∑
n=1

n∑
i=1

(
an + 1

an

)2−q
E|Xni|qI (an < |Xni| ≤ dn)

aqn

≤ C

∞∑
n=1

n∑
i=1

Eψi (Xni)

ψi (an)
+ C

∞∑
n=1

n∑
i=1

E|Xni|qI (|Xni| > an)

aqn

≤ 2C

∞∑
n=1

n∑
i=1

Eψi (Xni)

ψi (an)
<∞.(3.17)

For I52, note that
∞∑

n=1

n∑
i=1

a−qn

∫ dq
n

aq
n

EX2
niI
(
dn < |Xni| ≤ t1/q

)
t−2/qdt = 0.

Taking t = xq. By the condition (1.4) and 1 ≤ q < 2,

I52 = C

∞∑
n=1

n∑
i=1

a−qn

∞∑
m=dn

∫ m+1

m

EX2
niI (dn < |Xni| ≤ x)xq−3dx

≤ C
∞∑

n=1

n∑
i=1

a−qn

∞∑
m=dn

EX2
niI (dn < |Xni| ≤ m+ 1)mq−3

≤ C
∞∑

n=1

n∑
i=1

a−qn

∞∑
m=dn

mq−3
m∑

j=dn

EX2
niI (j < |Xni| ≤ j + 1)

≤ C
∞∑

n=1

n∑
i=1

a−qn

∞∑
j=dn

jq−2EX2
niI (j < |Xni| ≤ j + 1)

≤ C
∞∑

n=1

n∑
i=1

a−qn E|Xni|qI (|Xni| > dn)

≤ C
∞∑

n=1

n∑
i=1

E|Xni|qI (|Xni| > an)

aqn

≤ C
∞∑

n=1

n∑
i=1

Eψi (Xni)

ψi (an)
<∞.(3.18)

By an argument similar to the proof of I6 < ∞, one has that I53 < ∞.
Hence, the desired result I5 < ∞ is proved for 1 ≤ q < p ≤ 2. The proof of
Theorem 2.3 is completed. �

Proof of Theorem 2.4. Similarly, by the proofs of Theorems 2.2 and 2.3, the
corresponding results of I3 <∞, I6 <∞, (3.14) and (3.15) hold. To prove the
desired result (2.2), it needs only to show that I5 <∞ for 1 ≤ q < p and p > 2.

By the Markov inequality, (3.2) and the cr inequality,

I5 ≤
∞∑

n=1

a−qn

∫ ∞
aq
n

P

(
max
1≤j≤n

∣∣∣∣∣
j∑

i=1

(
Y t
ni − EY t

ni

)∣∣∣∣∣ > t1/q

2

)
dt
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≤ C

∞∑
n=1

a−qn

∫ ∞
aq
n

t−p/qE

(
max
1≤j≤n

∣∣∣∣∣
j∑

i=1

(
Y t
ni − EY t

ni

)∣∣∣∣∣
p)

dt

≤ C

∞∑
n=1

a−qn

∫ ∞
aq
n

t−p/q

 n∑
i=1

E
∣∣Y t

ni

∣∣p+

(
n∑

i=1

E
∣∣Y t

ni

∣∣2)p/2
 dt

≤ C

∞∑
n=1

a−qn

n∑
i=1

∫ ∞
aq
n

E
∣∣Y t

ni

∣∣pt−p/qdt
+ C

∞∑
n=1

a−qn

∫ ∞
aq
n

t−p/q

(
n∑

i=1

E
(
Y t
ni

)2)p/2

dt

.
= I7 + I8.(3.19)

For I7, by 1 ≤ q < p and p > 2, let dn = [an] + 1,

I7 = C

∞∑
n=1

a−qn

n∑
i=1

∫ ∞
aq
n

E|Xni|pt−p/qI (|Xni| ≤ dn) dt

+ C

∞∑
n=1

a−qn

n∑
i=1

∫ ∞
aq
n

E|Xni|pt−p/qI
(
dn < |Xni| ≤ t1/q

)
dt

+ C

∞∑
n=1

a−qn

n∑
i=1

∫ ∞
aq
n

P
(
|Xni| > t1/q

)
dt

.
= I71 + I72 + I73.(3.20)

By the argument similar to the proofs of I51 < ∞, I52 < ∞ and I53 < ∞
(replacing the exponent 2 by p), I7 <∞ can be also proved.

For I8, since p > 2,

I8 = C

∞∑
n=1

a−qn

∫ ∞
aq
n

t−p/q

(
n∑

i=1

E
(
Y t
ni

)2)p/2

dt

≤ C

∞∑
n=1

a−qn

∫ ∞
aq
n

t−p/q

(
n∑

i=1

EX2
niI (|Xni| ≤ an)

)p/2

dt

+ C

∞∑
n=1

a−qn

∫ ∞
aq
n

t−p/q

(
n∑

i=1

EX2
niI
(
an < |Xni| ≤ t1/q

))p/2

dt

+ C

∞∑
n=1

a−qn

∫ ∞
aq
n

(
n∑

i=1

P
(
|Xni| > t1/q

))p/2

dt

.
= I81 + I82 + I83.(3.21)
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For I81, by 1 ≤ q < p, p > 2, p > 2s and (1.5),

I81 ≤ C
∞∑

n=1

(
n∑

i=1

EX2
niI (|Xni| ≤ an)

a2n

)p/2

≤ C

( ∞∑
n=1

(
n∑

i=1

E|Xni|rI (|Xni| ≤ an)

arn

)s)p/2s

<∞.

The proof of I82 <∞ is proceeded with the following two cases of 1 ≤ q ≤ 2
and 2 < q < p.

(a) For 1 ≤ q ≤ 2 and p > 2. By (1.4) and the cr inequality,

I82 ≤ C
∞∑

n=1

a−qn

∫ ∞
aq
n

(
t−1

n∑
i=1

E|Xni|qI
(
an < |Xni| ≤ t1/q

))p/2

dt

≤ C
∞∑

n=1

a−qn

(
n∑

i=1

E|Xni|qI (|Xni| > an)

)p/2 ∫ ∞
aq
n

t−p/2dt

≤ C
∞∑

n=1

(
n∑

i=1

E|Xni|qI (|Xni| > an)

aqn

)p/2

≤ C

( ∞∑
n=1

n∑
i=1

Eψi (Xni)

ψi (an)

)p/2

<∞.(3.22)

(b) For 2 < q < p. By (1.4) and the cr inequality again,

I82 ≤ C
∞∑

n=1

a−qn

(
n∑

i=1

E|Xni|2I (|Xni| > an)

)p/2 ∫ ∞
aq
n

t−p/qdt

≤ C
∞∑

n=1

(
n∑

i=1

E|Xni|2I (|Xni| > an)

a2n

)p/2

≤ C
∞∑

n=1

(
n∑

i=1

E|Xni|qI (|Xni| > an)

aqn

)p/2

≤ C

( ∞∑
n=1

n∑
i=1

Eψi (Xni)

ψi (an)

)p/2

<∞.(3.23)

For I83, it follows from (2.1) that ψi(|t|) ↑ as |t| ↑. By (1.3),

sup
t≥aq

n

n∑
i=1

P
(
|Xni| > t1/q

)
≤

n∑
i=1

P (|Xni| > an)

≤
n∑

i=1

Eψi (|Xni|)
ψi (an)

→ 0 as n→∞.(3.24)
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Hence for sufficiently large n,
∑n

i=1 P
(
|Xni| > t1/q

)
< 1 holds uniformly for all

t ≥ aqn. Similarly to the proof of (3.13), I83 <∞ holds. The proof of Theorem
2.4 is completed. �

Proof of Theorem 2.5. Following those notations in the proof of Theorem 2.3.
Firstly, one will prove (2.4) for 1 < p ≤ 2. Noting that

E

(
1

an
max
1≤j≤n

∣∣∣∣∣
j∑

i=1

Xni

∣∣∣∣∣
)q

=
1

aqn

∫ ∞
0

P

(
max
1≤j≤n

∣∣∣∣∣
j∑

i=1

Xni

∣∣∣∣∣ > t1/q

)
dt

=
1

aqn

∫ εaq
n

0

P

(
max
1≤j≤n

∣∣∣∣∣
j∑

i=1

Xni

∣∣∣∣∣ > t1/q

)
dt

+
1

aqn

∫ ∞
εaq

n

P

(
max
1≤j≤n

∣∣∣∣∣
j∑

i=1

Xni

∣∣∣∣∣ > t1/q

)
dt

≤ ε+
1

aqn

∫ ∞
εaq

n

P

(
max
1≤j≤n

∣∣∣∣∣
j∑

i=1

Y t
ni

∣∣∣∣∣ > t1/q

)
dt

+
1

aqn

∫ ∞
εaq

n

n∑
i=1

P
(
|Xni| > t1/q

)
dt

.
= ε+ I9 + I10.(3.25)

Without loss of generality, assume that 0 < ε < 1. For I10, by the cr
inequality and (2.3),

I10 ≤ C

n∑
i=1

1

aqn

∫ ∞
εaq

n

P
(
|Xni| I (εaqn < |Xni| ≤ an) > t1/q

)
dt

+ C

n∑
i=1

1

aqn

∫ ∞
εaq

n

P
(
|Xni| I (|Xni| > an) > t1/q

)
dt

≤ C

n∑
i=1

1

aqn
E|Xni|pI (εaqn < |Xni| ≤ an)

∫ ∞
εaq

n

t−p/qdt

+ C

n∑
i=1

1

aqn

∫ ∞
0

P
(
|Xni| I (|Xni| > an) > t1/q

)
dt

≤ Cε1−(p/q)
n∑

i=1

E|Xni|pI (|Xni| ≤ an)

apn

+ C

n∑
i=1

1

aqn
E|Xni|qI (|Xni| > an)

≤ C

n∑
i=1

Eψi (Xni)

ψi (an)
→ 0 as n→∞.(3.26)
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By EXni = 0, (2.3) and (1.2), one has that

max
t≥εaq

n

1

t1/q
max
1≤j≤n

∣∣∣∣∣
j∑

i=1

EY t
ni

∣∣∣∣∣
= max

t≥εaq
n

1

t1/q
max
1≤j≤n

∣∣∣∣∣
j∑

i=1

EZt
ni

∣∣∣∣∣
≤ Cmax

t≥aq
n

1

t1/q

n∑
i=1

E |Xni| I
(
|Xni| > t1/q

)
≤ Cε−1/q

n∑
i=1

E|Xni|qI (|Xni| > an)

aqn

+ Cε−p/q
n∑

i=1

E|Xni|pI
(
ε1/qan < |Xni| ≤ an

)
apn

≤ C
(
ε−1/q + ε−p/q

) n∑
i=1

Eψi (Xni)

ψi (an)
→ 0 as n→∞.(3.27)

Hence for sufficiently large n , 1
t1/q

max
1≤j≤n

∣∣∣∣ j∑
i=1

EY t
ni

∣∣∣∣→ 0 holds uniformly for all

t ≥ εaqn.
Let dn = [an] + 1, by the Markov inequality, (3.1) and the cr inequality,

I9 ≤ C

n∑
i=1

1

aqn

∫ ∞
εaq

n

t−2/qE
(
Y t
ni − EY t

ni

)2
dt

≤ C

n∑
i=1

1

aqn

∫ ∞
εaq

n

t−2/qEX2
niI (|Xni| ≤ dn) dt

+ C

n∑
i=1

1

aqn

∫ ∞
εaq

n

t−2/qEX2
niI
(
dn < |Xni| ≤ t1/q

)
dt

+ C

n∑
i=1

1

aqn

∫ ∞
εaq

n

P
(
|Xni| > t1/q

)
dt

.
= I91 + I92 + I93.(3.28)

By the similar argument as those in the proofs of I51 < ∞, I52 < ∞ and
I10 → 0, one can have that I91 → 0, I92 → 0 and I93 → 0.

The proof of (2.4) for 1 ≤ q < p and p > 2 is similar to that of Theorem 2.4,
here omits the detail. The proof of Theorem 2.5 is completed. �
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