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GLOBAL UNIQUENESS FOR THE RADON TRANSFORM

Takashi Takiguchi

Abstract. In this article, we discuss the global uniqueness problem for

the Radon transform. It is not sufficient for the global uniqueness for the

Radon transform to assume that the Radon transform Rf for a function
f absolutely converges on any hyperplane. It is also known that it is

sufficient to assume that f ∈ L1 for the global uniqueness to hold. There
exists a big gap between the above two conditions, to fill which is our

purpose in this paper. We shall give a better sufficient condition for the

global uniqueness of the Radon transform.

1. Introduction

In this article, we discuss the global uniqueness problem for the Radon trans-
form. Let us first review the definition of the Radon transform.

Definition 1.1. Let f be a function defined on Rn. Its Radon transform Rf
is defined by

(1) Rf(H(θ, s)) ≡ Rf(θ, s) :=

∫
θ⊥
f(sθ + y)dy,

when it is well-defined, where θ ∈ Sn−1, s ∈ R, θ⊥ := {x ∈ Rn ; x ⊥ θ}
and y ∈ θ⊥. Note that the pair (θ, s) is identified with the hyperplane H =
H(θ, s) = {x ∈ Rn ; x · θ = s}. We also note that H(θ, s) = H(−θ,−s).

We shall discuss the global uniqueness problem for this transform, which
reads as:

Problem 1.1. Let a function f be defined on Rn. Assume that for any hy-
perplane H, its Radon transform Rf(H) absolutely converges to 0. Does this
condition imply that f ≡ 0?

It is sufficient to study Problem 1.1 for the global uniqueness of the Radon
transform, since the Radon transform is linear. The answer to Problem 1.1 is
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known to be negative without any global growth (or decay) condition on the
function f . It is also known that if we assume that f ∈ L1(Rn), then the answer
to Problem 1.1 is positive (cf. Theorem 2.1 below). In the present article, we
try to give a better global sufficient condition for the answer to Problem 1.1
to be positive than the known one, f ∈ L1(Rn), which is the main purpose in
this paper.

In this section, as the introduction of this article, we are introducing our
problems and the context of this article.

In the next section, we shall introduce the known results on the global
uniqueness problem and propose the main problem in this paper. It is well
known that the condition f ∈ L1(Rn) is sufficient for the global uniqueness of
the Radon transform, and that the global uniqueness would not hold without
any global condition. In Section 2, we pose a problem whether there exists a
better sufficient global condition for the global uniqueness of the Radon trans-
form.

In Section 3, we prove the main theorem in this paper. We give a better
sufficient condition for the global uniqueness of the Radon transform. It is
surprising that the global uniqueness for the Radon transform holds even if
the function is not decreasing, that is, we shall prove that if the function
f is infra-exponentially increasing (Theorem 3.1 below), then the answer to
Problem 1.1 is positive, in order to prove which, we apply the idea of the
Fourier hyperfunctions.

In Section 4, we shall summarize the conclusion in this article and mention
some open problems left for further development.

2. Known results

In this section, we shall review the known results on the global uniqueness
of the Radon transform and propose the main problem to be discussed in this
paper.

As was mentioned in Introduction, the answer to Problem 1.1 is negative
without any global decay (or growth) condition on the function. It is also known
that it is sufficient to assume that f ∈ L1(Rn) for the answer to Problem 1.1
to be positive.

Theorem 2.1 (A global uniqueness theorem for the Radon transform, [6]).
For f ∈ L1(Rn), Rf ≡ 0 implies that f ≡ 0.

The proof of this theorem is too easy to omit and we shall modify it in the
third section to prove our main theorem, Theorem 3.1 below. Therefore, we
shall review it.

Proof of Theorem 2.1. We first note that for a fixed θ ∈ Sn−1, Rf(θ, s) is well-
defined for almost all s ∈ R and Rf(θ, s) ∈ L1(R) as a function of s ∈ R.
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Denote x = (x′, xn), x′ ∈ Rn−1, xn ∈ R, then we have

(2) f̂(0, ξn) =

∫
R
e−ixnξxdxn

∫
Rn−1

f(x′, xn)dx′ = 0,

where for ξ ∈ Rn,

(3) f̂(ξ) =

∫
R
e−ix·ξf(x)dx

is the Fourier transform of the function f . In the same way, we can prove that
for any θ ∈ Sn−1, the condition Rf(H) = 0 for any hyperplane H ⊥ θ implies

f̂(rθ) = 0 for any r ∈ R. Since f̂ is continuous by Riemann-Lebesgue theorem,

we conclude that f̂ ≡ 0. Therefore f ≡ 0. �

By Theorem 2.1, it is sufficient to assume f ∈ L1 for the global uniqueness
of the Radon transform. We shall next introduce an example to show that the
global uniqueness for the Radon transform would not hold without any global
condition on the function. It was L. Zalcman [6] who first constructed such an
example, however, we shall introduce another counterexample by the author
[4]. We also note that another type of example to show the non-uniqueness of
the Radon transform is constructed by D. H. Armitage [2].

Theorem 2.2 (cf. [4] and [6]). There exists a continuous function f defined
on R2 satisfying the following conditions;

(i) Rf(l) absolutely converges to 0 for any line l ⊂ R2.
(ii) f 6≡ 0.

Let us introduce the proof by the author [4];
Let us regard R2 ∼= C. We constructed an entire function f 6≡ 0 on C satisfying
the following conditions.

(a) f(z) rapidly decays uniformly outside
{1/4 < (Re z)2 − (Im z)2 < 4, Re z < 0, Im z > 0} as |z| → ∞.

(b) The Radon transform Rf(l) of f absolutely converges to 0 for any line
l in C.

For this purpose, we constructed an entire function g(z) 6≡ 0 defined on C
satisfying the following conditions.

(4)

∫
l

|g′(z)||dz| <∞ for ∀l,

(5)
|z|kg(z)→ 0 uniformly in z as |z| → ∞, ∀k > 0,

for z ∈ C \
{

1/4 < (Re z)2 − (Im z)2 < 4, Re z < 0, Im z > 0
}
.

Let f(z) := g′(z). By (4),
∫
l
f(z)dz absolutely converges for any l. By (5) and

Cauchy’s integral theorem we obtain

(6)

∫
l

f(z)dz = 0 for any l,
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which proves Theorem 2.2.
For later discussion, it is very important to know what functions f(z) and

g(z) are, which let us review.

Lemma 2.1 (N. U. Arakelian, 1965, [1]). Let M be a closed set in C such that

Ĉ\M is connected and arcwise connected at infinity in Ĉ, where Ĉ := Ct{∞}
is the one point compactification of the complex plane C, for whose model,
we take the unit sphere S1 ⊂ R2 with the north pole as the point at infinity.
Assume that ε(t) > 0 is a decreasing function in t satisfying

(7)

∫ ∞
1

log ε(t)

t
3
2

dt > −∞.

Then for any h(z) ∈ C(M)∩A(M int) there exists an entire function g(z) such
that

(8)
∣∣∣h(z)− g(z)

∣∣∣ < ε(|z|) for ∀z ∈M,

where C(M) the set of continuous functions on M and A(M int) is the set of
the analytic (or holomorphic) functions in the interior of M .

Let

K :=
{
z ∈ C ; |z| < 5

}
,(9)

S := {1/4 < (Re z)2 − (Im z)2 < 4, Re z < 0, Im z > 0},(10)

M := C \ (K ∪ S).(11)

Note that M is a closed subset in C and Ĉ \ M is connected and arcwise
connected at infinity. We put

(12) ϕ(z) := iz2 − i.

Note that we can define 0 < argϕ(z) < 4π on M , which makes logϕ(z) a
single-valued holomorphic function in M int. Let

(13) h(z) :=
1

ϕ(z)logϕ(z)
= e−(logϕ(z))

2

∈ C(M) ∩ A(M int),

(14) ε(t) :=
1

(t2 − 1)log(t2−1)
.

Since M , h and ε defined by (11), (13) and (14) satisfy the assumption of
Lemma 2.1, there exists an entire function g(z) satisfying

(15)
∣∣∣ 1

ϕ(z)logϕ(z)
− g(z)

∣∣∣ < 1

(|z|2 − 1)log(|z|2−1)
for z ∈M.

Since

(16)
∣∣∣ 1

ϕ(z)logϕ(z)

∣∣∣ =
e(argϕ(z))

2

|ϕ(z)|log |ϕ(z)|
,
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we have g(z) 6≡ 0. In fact, if we assume g ≡ 0, then taking z ∈ R contradicts to
(16), since, for z ∈ R, |ϕ(z)logϕ(z)| = |ϕ(z)|log |ϕ(z)| and argϕ(z) > 1. By (16),
we have

(17) |g(z)| ≤ e16π
2

+ 1

|ϕ(z)|log |ϕ(z)|
for z ∈M.

Therefore, g(z) is rapidly decreasing in M , which implies (5). Let z ∈ M int

and

(18) d = d(z) :=
1

2
dist(z, ∂M),

where ∂M is the boundary of M . Let L(z) := max|ζ−z|=d |g(ζ)|. Then we have

(19)
1

2
|z| ≤ |z| − d ≤ |ζ| for |ζ − z| = d,

since d(z) ≤ 1
2 |z|. Hence it holds by virtue of (17), (19) and |z| ≥ 5 that

(20) L(z) ≤ max
|ζ−z|=d

e16π
2

+ 1

(|ζ|2 − 1)log(|ζ|2−1)
≤ (e16π

2

+ 1)e−(log(
|z|2
4 −1))

2

.

Cauchy’s integral formula yields

|g′(z)| =

∣∣∣∣∣ 1

2πi

∫
|ζ−z|=d

g(ζ)

(ζ − z)2
dζ

∣∣∣∣∣ ≤ L(z)

d(z)

≤ e16π
2

+ 1

d(z)
e−(log(

|z|2
4 −1))

2

.

(21)

Since d(z) = O(1/|z|) on the most critical line {Im z = −Re z} as −Re z =
Im z →∞, |g′(z)| is integrable on all lines in C by (21). Thus we have (4).

By Theorem 2.1, it is sufficient to assume f ∈ L1 for the global uniqueness
of the Radon transform, while Theorem 2.2 claims that the global unique-
ness for the Radon transform would not hold without any global condition on
the function. The function g constructed in (15), consequently as well as the
function f(z) = g′(z), super-exponentially increases as |z| → ∞ in S defined
by (10). Another counterexample constructed by L. Zalcman [6] also super-
exponentially grows in some domain.

We claim that the gap between the known sufficient growth condition, f ∈
L1, for the global uniqueness and the growth of a counterexample, super-
exponential one, is too big and must be filled. Therefore, we pose the following
problem, which is the main problem to be studied in this paper.

Problem 2.1. Under the assumption that Rf(H) absolutely converges to 0 for
any (or for almost all) hyperplane H, is there any better sufficient condition
for the global uniqueness of the Radon transform to hold?
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3. Main theorem

In this section, we give an answer to Problem 2.1. In our main theorem,
Theorem 3.1, we claim that under the assumption that Rf(H) absolutely con-
verges to 0 for any (or for almost all) hyperplane H, it is sufficient to assume
that f is measurable and that f(x) globally and infra-exponentially grows as
|x| → ∞, for the answer to Problem 1.1 to be positive. In the main theorem,
Theorem 3.1, we treat functions with infra-exponential growth ((28) below), in
order of which, it is useful to introduce the idea of the Fourier hyperfunctions.

Definition 3.1. A Fourier hyperfunction f(x) on Rn is defined by the bound-
ary value of holomorphic functions

(22) f(x) =

N∑
j=1

Fj(x+ iΓj0),

where Γj ⊂ Rn is an open cone and for any relatively compact cone Γ′j b Γj
there exists a constant c(Γ′j) > 0 such that Fj(z) is holomorphic on (Rn+iΓ′j)∩
{|Im z| < c(Γ′j)}, and for any δ > 0 it satisfies that for any ε > 0 there exists
a constant Cε > 0 such that

(23) |Fj(z)| ≤ Cεeε|Rez|

uniformly on (Rn + iΓ′j) ∩ {δ < |Im z| < c(Γ′j)}.

Roughly speaking, a Fourier hyperfunction is defined as a sum of the bound-
ary values as Im z → 0 of holomorphic functions Fj ’s which are holomorphic
in the domain (Rn + iΓj) ∩ {Im z < kj} with some kj > 0 and have the
infra-growth estimate (23).

It is important in this paper that the space of Fourier hyperfunctions is
defined as the strong dual space of the space

(24) P∗(Rn) = lim−→
0∈I

lim−→
δ→+0

O−δ(Rn + iI),

where g ∈ O−δ(Rn + iI) for an interval I ⊂ Rn containing the origin is defined
by the following two conditions;

(3.1) g(x+ iy) is holomorphic in Rn + iI,
(3.2) For any K b I and for any ε > 0, there exists some constant CK,ε > 0

such that the following estimate uniformly holds

(25) |f(x+ iy)| ≤ CK,εe−(δ−ε)|x|.
Roughly speaking, P∗(Rn) is the space of exponentially decreasing analytic
functions which are extended holomorphically and exponentially decreasingly
to some strip neighborhood of the real axis. For a pair of a Fourier hyperfunc-
tion f and a function g ∈ P∗(Rn), its duality is defined by

(26) 〈f, g〉 =

∫
Rn

f(x+ iy)g(x+ iy)dx
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for any y with small |y|, and the Fourier transform f̂ is defined via the duality
as follows:

(27) 〈f̂ , g〉 = 〈f, ĝ〉.
It is known that the Fourier transform is the automorphism on the space of the
Fourier hyperfunctions (Theorem 8.3.4 in [3]). For general properties of the
Fourier hyperfunctions as well as more details of P∗, O

−δ and so on, we refer
the readers to [3].

The following theorem gives a new and better sufficient condition for the
global uniqueness of the Radon transform.

Theorem 3.1. Let f ∈ C(Rn) satisfy that for any ε > 0 there exists a constant
Cε > 0 such that

(28) |f(x)| ≤ Cεeε|x|

for any x ∈ Rn. Then the condition that the Radon transform Rf(H) absolutely
converges to 0 for all hyperplanes H ⊂ Rn yields that f(x) ≡ 0.

Proof. Theorem 3.1 is proved by modifying the proof of Theorem 2.1.
In view of the above discussion, any function f satisfying the assumption of

Theorem 3.1 can be taken for a Fourier hyperfunction, since its duality with any
g ∈ P∗(Rn) is simply defined by the following absolutely convergent integral;

(29) 〈f, g〉 =

∫
Rn

f(x)g(x)dx.

Let us denote ξ = (ξ′, ξn), ξ′ ∈ Rn−1, ξn ∈ R. The fact that the Radon
transform, for example

∫
Rn−1 f(x′, xn)dx′, absolutely converges to 0 for any

ξn ∈ R, yields that the duality

(30) 〈f, g〉 =

∫
R

(∫
Rn−1

f(x′, xn)dx′
)
ϕ(xn)dxn

is well defined to be equal to 0, where g(x) = 1Rn−1⊗ϕ(xn), 1Rn−1 is a function
identically equal to 1 for any x′ ∈ Rn−1 and ϕ(xn) ∈ P∗(R). In the same way,
we obtain that the duality
(31)

〈f̂(0, ξn), 1Rn−1 ⊗ ϕ(ξn)〉 =

∫
R

((∫
Rn−1

f(x′, xn)dx′
)
e−ixnξndxn

)
ϕ(ξn)dξn

is well defined to be 0, by virtue of the fact that the Radon transform∫
Rn−1

f(x′, xn)dx′

absolutely converges to 0 for any xn ∈ R. Since we have assumed that the
Radon transform Rf(H) absolutely converges to 0 for all hyperplanes H ⊂ Rn,

we conclude that the Fourier transform f̂ of the function f is identically 0,
which proves the theorem by the uniqueness of the Fourier transform of the
Fourier hyperfunctions (Theorem 8.3.4 in [3]). �
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Remark 3.1. Roughly speaking, the Fourier transform exchanges the regular-
ity of the function and its decay (or growth). The smoother the function
is, the more rapidly its Fourier transform decreases. The faster the function
decreases, the more regular its Fourier transform is. If the function grows infra-
exponentially, then its Fourier transform is a Fourier hyperfunctions (cf. [3]).
Therefore, we have applied the idea of the Fourier hyperfunctions in the proof
of Theorem 3.1. It is very difficult to prove our main theorem in the space of
the distributions.

Theorem 3.1 claims that the global uniqueness for the Radon transform
holds even if the function is increasing (not decreasing), if its increasing order
is an infra-exponential one defined in (28). The author being afraid that the
proof of Theorem 3.1 looks too complicated, what is important is that the
essential idea to proof Theorem 2.1 is applicable in the frame of the Fourier
hyperfunctions. The idea to prove the main theorem, Theorem 3.1, being very
simple, its conclusion is very important.

4. Conclusion and open problems

As the final section of this article, we shall summarize the conclusions of this
article and mention open problems left to be solved for further development.

Let us first summarize the conclusions of this article.

Conclusion 4.1.

• We have proved a generalized global uniqueness theorem (Theorem 3.1).
The essential idea to prove our main theorem is to assume the global
infra-exponential growth condition on the function.

• It is interesting and surprising that the main theorem, Theorem 3.1,
claims that the global uniqueness for the Radon transform holds even
if the function is increasing, if the growth is infra-exponential one.

• We have introduced a counterexample constructed in Section 2.2 to The-
orem 2.1. It grows super-exponentially in the narrow domain S defined
in (11) as |x+ iy| = |z| → ∞.

In view of the last conclusion of Conclusion 4.1, it is left open to study the
case, for example, where the global growth condition is assumed to be an expo-
nential one, for the complete study of the global uniqueness. The exact global
growth of the counterexamples introduced in Section 2 has not been completely
studied. Therefore there still exist open problems to complete the study of the
sufficient global growth condition for the global uniqueness of the Radon trans-
form. Our main theorem (Theorem 3.1) also holds for Fourier hyperfunctions.
We refer the readers to [5] for the Radon transform for hyperfunctions.
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