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POSITIVELY WEAK MEASURE EXPANSIVE

DIFFERENTIABLE MAPS

Jiweon Ahn and Manseob Lee

Abstract. In this paper, we introduce the new general concept of usual

expansiveness which is called “positively weak measure expansiveness”
and study the basic properties of positively weak measure expansive C1-

differentiable maps on a compact smooth manifold M . And we prove that
the following theorems.

(1) Let PWE be the set of all positively weak measure expansive differ-

entiable maps of M . Denote by int(PWE) is a C1-interior of PWE.
f ∈ int(PWE) if and only if f is expanding.

(2) For C1-generic f ∈ C1(M), f is positively weak measure-expansive

if and only if f is expanding.

1. Introduction

Let M be a compact C∞ Riemannian manifold without boundary and f :
M → M be a diffeomorphism. Denote by d the distance on M induced from
the Riemannian metric ‖ · ‖ on the tangent bundle TM .

In the middle of 20th century, the notion of expansiveness was introduced
by Utz [16]. After that there are many attempts to generalization of concept
of expansiveness.

In [16], a diffeomorphism f is expansive if there is e > 0 such that for any
x, y ∈ M if d(f i(x), f i(y)) < e for all i ∈ Z, then x = y. Note that if a
diffeomorphism f is expansive, then Γe(x) = {x} for x ∈ M , where Γe(x) =
{y ∈ M : d(f i(x), f i(y)) < e for all i ∈ Z}. Morales [11] introduced a general
concept of expansiveness which is called measure expansiveness. For a Borel
probability measure µ on M , we say that f is µ-expansive if there is e > 0
such that µ(Γe(x)) = 0 for all x ∈ M . We say that f is measure expansive
if it is µ-expansive for every non-atomic Borel probability measure µ on M .
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Very recently, Ahn et al. [1] introduce weak measure expansiveness which is
a concept generalizing the notion of measure expansiveness. For any δ > 0,
a finite collection P = {A1, A2, . . . , An} of subsets of M is a finite δ-partition
of M if for all i = 1, 2, . . . , n, Ai’s are disjoint,

⋃n
i=1Ai = M , each Ai is

measurable, int(Ai) 6= ∅ and diamAi ≤ δ. Here, diamA means the diameter of
A ⊂M . However, for any δ > 0, the presence of finite δ-partition is clear by the
compactness of M . So we will omit δ except when necessary for convenience
(for more details, see [1]).

Let µ be a Borel probability measure. A diffeomorphism f : M →M is said
to be weak µ-expansive if there is a finite partition P = {A1, A2, . . . , An} of M

such that µ(ΓfP(x)) = 0 for all x ∈M , where

ΓfP(x) = {y ∈M : f i(y) ∈ P(f i(x)) for all i ∈ Z},

and P(x) means that the element of P containing x. The set ΓfP(x) is called
the dynamic P-ball of x with respect to f . Note that

ΓfP(x) =
⋂
i∈Z

f−i(P(f i(x))),

and ΓfP(x) is measurable. And we say that f is weak measure expansive if it is
µ-expansive for every non-atomic Borel probability measure µ on M .

Various types of expansiveness are useful concepts in studying the stability
of dynamics. In fact, C1-robust properties and C1-generic properties are used
in general work methods.

For C1-robust cases, Mãné [10] proved that if a diffeomorphism f belongs
to the C1-interior of the set of all expansive diffeomorphisms, then f is quasi-
Anosov. Here, f is quasi-Anosov if for all v ∈ TM \ {0}, the set {‖Dfn(v)‖ :
n ∈ Z} is unbounded.

Sakai et al. [14] proved that a diffeomorphism f which is an element of
the C1-interior of the set of all invariant measure expansive diffeomorphisms is
quasi-Anosov. From these results, we know that the C1-interior of the set of all
expansive diffeomorphisms is equal to the C1-interior of the set of all invariant
measure expansive diffeomorphisms, even though the set of all expansive dif-
feomorphisms is a subset of the set of all measure expansive diffeomorphisms.
Recently, Ahn and Kim [1] proved that if a diffeomorphism f belongs to the
C1-interior of the set of all weak measure expansive diffeomorphisms, then f
satisfies quasi-Anosov.

We say that a diffeomorphim f satisfies Axiom A if the non-wandering set
Ω(f) is the closure of the periodic set P (f) and it is hyperbolic. Here a closed
f -invariant set Λ is called hyperbolic if the tangent bundle TΛM has a Df -
invariant splitting Es ⊕ Eu and there exist constants C > 0 and 0 < λ < 1
such that

‖Dxf
n|Esx‖ ≤ Cλ

n and ‖Dxf
−n|Eux ‖ ≤ Cλ

n

for all x ∈ Λ and n ≥ 0.
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Note that the following properties are mutually equivalent for a diffeomor-
phism f (see [5]);

- f is Ω-stable,
- f satisfies Axiom A and no cycle condition, and
- f ∈ F1(M),

where f ∈ F1(M) means that there exists a C1-neighborhood U(f) such that
for all g ∈ U(f), every periodic point of g is hyperbolic.

Let Diff(M) be a space of all diffeomorphisms on M with C1-topology. It
is known that Diff(M) is a Baire space. We say that a subset G ⊂ Diff(M) is
residual if G contains the intersection of a countable family of open and dense
subsets of Diff(M); in this case G is dense in Diff(M). A property “A” is said
to be C1-generic if “A” holds for all differentiable maps which belong to some
residual subset of Diff(M).

For C1-generic cases, Arbieto [4] proved that C1 generically, an expansive
diffeomorphism is Axiom A without cycles. Lee [7] proved that C1 generically,
a measure expansive diffeomorphism is Axiom A without cycles and Lee [6]
proved that C1 generically, a continuum-wise expansive diffeomorphism is Ax-
iom A without cycles. Also, Ahn and Kim [1] proved that C1 generically, a
weak measure expansive diffeomorphism is Axiom A without cycles.

From the above results, we consider a general concept of expansive differen-
tiable maps as robust and generic view points.

2. Basic notions and main theorems

Let M be a compact C∞ Riemannian manifold without boundary and
C1(M) be the space of differentiable maps of M endowed with the C1-topology.
First of all, we recall the definition of positive expansiveness.

Definition 1. A differentiable map f : M → M is called positively expansive
if there is δ > 0 such that d(f i(x), f i(y)) ≤ δ for all i ≥ 0 implies x = y.

Given x ∈M and δ > 0, we define the dynamic δ-ball of x with respect to f ,

Γfδ (x) = {y ∈M : d(f i(x), f i(y)) ≤ δ for all i ≥ 0}.

(We will mark Γδ(x) as Γfδ (x) for simplicity, if there is no confusion.) Then we
see that f is positively expansive if there is δ > 0 such that Γδ(x) = {x} for all
x ∈M . Note that

Γδ(x) =
⋂
i≥0

f−i(Bδ[f
i(x)]),

where Bδ[x] = {y ∈M : d(x, y) ≤ δ}.
Let B be the Borel σ-algebra on M . Denote by M(M) the set of Borel

probability measures on M endowed with the weak∗ topology. We say that
µ ∈ M(M) is atomic if there exists a point x ∈ M such that µ({x}) > 0. Let
M∗(M) = {µ ∈ M(M) : µ is nonatomic}. For the concept, we introduced
positive µ-expansiveness for differentiable maps.
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Definition 2. Let µ ∈ M∗(M). A differentiable map f : M → M is said to
be positively µ-expansive if there is δ > 0 (called an expansive constant of µ
with respect to f) such that µ(Γδ(x)) = 0 for all x ∈M .

Definition 3. A differentiable map f : M →M is said to be positively measure
expansive if f is positively µ-expansive for all µ ∈M∗(M).

From now, we introduce a “positively weak measure expansiveness”, a new
concept that generalizes weak measure expansiveness and check the basic prop-
erties of positively weak measure expansiveness for differentiable maps on M
by using a finite partition as follow:

Definition 4. Let µ ∈M∗(M). A differentiable map f : M →M is said to be
positively weak µ-expansive if there is a finite partition P = {A1, A2, . . . , An}
of M such that µ(ΓfP(x)) = 0 for all x ∈M , where

ΓfP(x) = {y ∈M : f i(y) ∈ P(f i(x)) for all i ≥ 0}.

We will mark ΓP(x) as ΓfP(x) for simplicity if there is no confusion.

Definition 5. A differentiable f : M →M is said to be positively weak measure
expansive if f is positively weak µ-expansive for all µ ∈M∗(M).

For differentiable maps, Aoki et al. [3] showed that the C1-interior of the set
of maps satisfying the two following conditions

(i) periodic points are hyperbolic, and
(ii) singular points belonging to the nonwandering set are sinks,

coincides with the set of Axiom A maps having the no cycle property.
For f ∈ C1(M) and p ∈ P (f), denote by π(p) > 0 the period, that is,

fπ(p)(p) = p and P (f) is the set of all periodic points of f . We say that p
is hyperbolic if Dpf : TpM → TpM has no eigenvalues with modulus equal to
0 or 1. Thus TpM splits into the direct sum Esp ⊕ Eup of subspaces such that

Dpf
π(p)(Esp) = Esp and Dpf

π(p)(Eup ) = Eup , and there exist constants C > 0
and 0 < λ < 1 such that

- ‖Dpf
n(v)‖ ≤ Cλn‖v‖ for v ∈ Esp and

- ‖Dxf
n(v)‖ ≤ Cλn‖v‖ for v ∈ Eup .

We say that a differentiable map f is expanding if there are constants C > 0
and λ > 1 such that for any v ∈ TxM(x ∈M),

‖Dxf
n(v)‖ ≥ Cλn‖v‖

for any n ≥ 0. It is known that every expanding map is positively measure
expansive, but the converse is not true. Since every expanding map f is struc-
turally stable, there is a C1-neighborhood U(f) of f such that any g ∈ U(f) is
positively measure expansive.

Sakai [13] showed that the C1-interior of the set of positively expansive
differentiable maps coincides with the set of expanding maps. Recently, Lee
et al. [9] proved that if a differentiable map which contains singularities is
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C1 robustly positively measure expansive, then it is expanding and Lee [6]
proved that the C1-interior of the set of positively continuum-wise expansive
differentiable maps coincides with the set of expanding maps. In this paper,
we study the space of positively weak measure expansive differentiable maps of
M .

From the above facts, the following theorem is one of main theorem of this
paper.

Theorem A. Let PWE be the set of all positively weak measure expansive
differentiable maps of M . Denote by int(PWE) is a C1-interior of PWE.
f ∈ int(PWE) if and only if f is expanding.

Sakai [13] showed that C1 generically, a differentiable map is positively ex-
pansive if and only if it is expanding, Lee et al. [9] proved that for positively
measure expansive differentiable map the above result is expanding and Lee
[8] proved that C1 generically, a differentiable map is positively expansive if
and only if it is also hold. In [2], Ahn et al. showed that C1 generically, a
differentiable map is positively measure expansive if and only if it is expanding
without considering of singularities. Recently, Lee et al. [9] proved the above
statement by considering of existence of singularities.

In this direction we prove the following theorem which is a main result of
this paper.

Theorem B. For C1-generic f ∈ C1(M), f is positively weak measure-
expansive if and only if f is expanding.

In Section 3, we check and prepare some basics of positively weak measure
expansive differentiable maps, even though some theorems do not use to prove
main theorems. Because this paper is the first which presents the positively
weak measure expansive differentiable maps, Section 3 is significant implica-
tions. Next, we give a proof of Theorem A in Section 4 and finally the proof
of Theorem B is constructed in Section 5.

3. Basic properties of positively weak measure expansiveness

In this section we explain positively weak measure expansive differentiable
maps. Let M be as before, and let f ∈ C1(M).

Theorem 3.1. If a differentiable map f is positively µ-expansive, then f is
positively weak µ-expansive for any µ ∈M∗(M).

Proof. Since f is positively µ-expansive, there exists δ > 0 such that µ(Γδ(x)) =
0 for all x ∈M . Let P be a finite δ-partition of M . Let y ∈ ΓP(x), then

f i(y) ∈ P(f i(x))

for all i ≥ 0. Since diamP(f i(x)) ≤ δ, we have d(f i(x), f i(y)) ≤ δ for all
i ≥ 0. Therefore y ∈ Γδ(x). That is, for any x ∈ M , we get ΓP(x) ⊂ Γδ(x).
Since µ(ΓP(x)) ≤ µ(Γδ(x)), we have µ(ΓP(x)) = 0. Hence f is positively weak
µ-expansive. �
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The following lemma is a property of positively weak measure expansiveness
for f ∈ C1(M). Simply, if f : M → M is the identity map, then M is not
positively weak measure expansive.

Lemma 3.2. The identity map on M is not positively weak measure expansive.

Proof. Put Id is the identity map. For a finite partition P = {A1, A2, . . . , An}
of M , ΓId

P (x) = Ai for all x ∈ Ai and i = 1, . . . , n. Choose Ai ∈ P such that
µ(Ai) > 0. Then µ(ΓId

P (x)) > 0 for all x ∈ Ai. Therefore Id is not positively
weak measure expansive. �

Remark 3.3. A differentiable map f is positively weak measure expansive if
and only if fn is positively weak measure expansive for all n ∈ N.

Proof. The proof of this remark is similar to the proof of Lemma 2.5 in [1]. But
we will provide a detailed proof for convenience. First, we prove the necessary
part. Let fn be positively weak measure expansive for n ∈ N. This means

that there exists a finite partition P of M such that µ(Γf
n

P (x)) = 0 for all

x ∈ M and µ ∈ M∗(M). And it is easy to check ΓfP(x) ⊂ Γf
n

P (x). This fact

implies µ(ΓfP(x)) ≤ µ(Γf
n

P (x)) = 0. Therefore f is also positively weak measure
expansive.

Conversely, suppose that f is positively weak measure expansive with a finite

partition P of M , that is, µ(ΓfP(x)) = 0 for all x ∈ M and µ ∈ M∗(M). We
consider Q =

∨n
i=0 f

−i(P), then Q is a finite partition of M satisfying

Q(x) =

n⋂
i=0

f−i(P(f i(x))).

Here,
∨n
i=0 f

−i(P) means the set {
⋂n
i=0 ζi : ζi ∈ f−i(P) for all 0 ≤ i ≤ n}

and it is called the join of the partition P. Now, take y ∈ Γf
n

Q (x), then clearly

y ∈ Q(x). From this, we can know that

f i(y) ∈ P(f i(x)) for every 0 ≤ i ≤ n.

Take k > n, so k = pn+ i for some p ∈ N and 0 ≤ i < n. Since y ∈ Γf
n

Q (x), we

have fpn(y) ∈ Q(fpn(x)) and then

fk(y) = fpn+i(y) = f i(fpn(y)) ∈ P(f i(fpn(x))) = P(fk(x))

for all k ∈ N, i.e., y ∈ ΓfP(x). Therefore we get Γf
n

Q (x) ⊂ ΓfP(x) and so

µ(Γf
n

Q (x)) = 0 for all x ∈ M and µ ∈ M∗(M). It follows that fn is positively
weak measure expansive with a finite partition Q of M . �

The support of a measure µ is denoted by Supp(µ). Given an f -invariant
Borel set Y (⊂M) of some f ∈ C1(M), set

M∗(Y ) = {µ : µ is an f -invariant Borel probability on M such that

Supp(µ) ⊂ Y },
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endowed with the weak∗ topology. It can be seen that this is clearly a subset
of M∗(M).

Theorem 3.4. If a differentiable map f : M →M is positively weak measure
expansive, then f |Y : Y → Y is positively weak measure-expansive for all f -
invariant Borel set Y (⊂M) of f .

Proof. Since f : M →M is positively weak measure expansive, there is a finite

partition P = {A1, . . . , An} of M such that µ(ΓfP(x)) = 0 for all x ∈ M and
for all µ ∈ M∗(M). Let Y ⊂ M . We defined ν ∈ M∗(Y ) by ν(A) = µ(A) for
a Borel set A ⊂ Y . Put

Q = {Ai ∩ Y |Ai ∈ P, i = 1, . . . , n}

for all f -invariant set Y in M . Then Q is a finite partition of Y , and we can

easily check Γ
f |Y
Q (x) ⊂ ΓfP(x) for all x ∈ Y . Indeed, if y ∈ Γ

f |Y
Q (x), then

f i|Y (y) and f i|Y (x) are contained in the same element Ak ∩ Y of Q for some
k ∈ {1, 2, . . . , n} and all i ∈ N. This means that f i(y) and f i(x) are contained

in the same element Ak of P for all i ∈ N. So, y ∈ ΓfP(x) by the definition.

Thus, from the following inequality ν(Γ
f |Y
Q (x)) = µ(Γ

f |Y
Q (x)) ≤ µ(ΓfP(x)) = 0

for all ν ∈ M∗(Y ), we get the conclusion, f |Y : Y → Y is positively weak
measure expansive. �

The following statement is the contraposition of the above theorem.

Corollary 3.5. If f |Y : Y → Y is not positively weak measure-expansive for
some f -invariant Borel set Y of f , then f : M → M is not positively weak
measure-expansive.

4. Proof of Theorem A

To prove Theorem A, we need some lemmas. Let M be as before and let
f ∈ C1(M).

The following lemma is called Franks lemma which is a version of differen-
tiable maps (see [4]).

Lemma 4.1. Let f ∈ C1(M) and U(f) be any given C1-neighborhood of f .
Then there exists δ > 0 such that for a finite set {x1, x2, . . . , xn}, a neighbor-
hood U of {x1, x2, . . . , xn} and linear maps Li : TxiM → Tf(xi)M satisfying
‖Li −Dxif‖ < δ for 1 ≤ i ≤ n, there are ε0 > 0 and g ∈ U(f) such that

(a) g(x) = f(x) if x ∈ {x1, x2, . . . , xN} and
(b) g(x) = expf(xi) ◦ Li ◦ exp−1

xi (x) if x ∈ Bε0(xi) for all 1 ≤ i ≤ n.

Observe that the assertion (b) implies that

g(x) = f(x) if x ∈ {x1, x2, . . . , xn}

and that Dxig = Li for all 1 ≤ i ≤ n.



576 J. AHN AND M. LEE

Let U(f) be a C1 neighborhood of f ∈ C1(M). We are going to show that
if a differentiable map f belongs to the C1 interior of the set of PWE , then
for any g ∈ U(f), every p ∈ P (g) is hyperbolic, where P (g) is the set of all
periodic point of g.

Lemma 4.2. If f ∈ int(PWE), then every periodic point of g C1-nearby f is
hyperbolic, that is, f ∈ F1(M).

Proof. Suppose that there is a C1-neighborhood U(f) of f such that every
g ∈ U(f) satisfies positively weak measure expansive. To derive a contradiction,
we assume that there exists a non-hyperbolic periodic point p ∈ P (g) for some
g ∈ U(f). By Lemma 4.1, we can assume that Dpg

π(p) has either only one
eigenvalue λ with |λ| = 1, or only one pair of complex conjugated eigenvalues.
Denote by Ecp the eigenspace corresponding to λ.

At first, we consider the case dimEcp = 1. In this case, suppose that λ = 1
for simplicity (other case is similar). Then by Lemma 4.1, there are ε0 > 0 and
h ∈ U(g)(⊂ U(f)) such that

(i) hπ(p)(p) = gπ(p) = p,
(ii) h(x) = expgi+1(p) ◦ Dgi(p)g ◦ exp−1

gi(p)(x), if x ∈ Bε0(gi(p)) for all 0 ≤
i ≤ π(p)− 2, and

(iii) h(x) = expp ◦Dgπ(p)−1(p)g ◦ exp−1
gπ(p)−1(p)

(x), if x ∈ Bε0(gπ(p)−1(p)).

Since λ = 1, there is a small arc Ip ⊂ Bε0(p) ∩ expp(E
c
p(ε0)) with its center at

p such that

- hi(Ip) ∩ hj(Ip) = ∅ if i 6= j for 0 ≤ i, j ≤ π(p)− 1,

- hπ(p)(Ip) = Ip and

- hπ(p)|Ip is the identity map.

Here, Ecp(ε0) is the ε0-ball in Ecp centered at the origin Op.

Put h1 = hπ(p)|Ip . Since h1 is the identity map, by Lemma 3.2 h1 is not
positively weak measure expansive. By Remark 3.3, h is not positively weak
measure expansive on Ip. To conclude, h is not positively weak measure ex-
pansive on M by Corollary 3.5. This contradicts the fact that h ∈ U(f).

Finally we consider that dimEcp = 2. For the sake of symbolic convenience,
this case only g(p) = p will be covered. By Lemma 4.1, we can find ε0 > 0 and
h ∈ U(g)(⊂ U(f)) such that

(i) h(p) = g(p) = p and
(ii) h(p) = expp ◦Dpg ◦ exp−1

p (x) if x ∈ Bε0(p).

Then we can choose m > 0 such that Dpg
m(ρ) = ρ for any ρ ∈ Ecp(ε0).

Take nonzero vector ρp ∈ Ecp(ε0/4) such that ‖ρp‖ = ε0/8 and establish Cp =
expp{α · ρp : 1 ≤ α ≤ 1 + ε0/8}. Then Cp is a disc such that

- hi(Cp) ∩ hj(Cp) = ∅ if i 6= j for 0 ≤ i, j ≤ m− 1,
- hm(Cp) = Cp and
- hm|Cp is the identity map.
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Then we can make the same conclusion for the same reason as the case dimEcp =
1. So this is complete for proof. �

Next lemma means that there are no sinks and saddles for f ∈ int(PWE).

Lemma 4.3. Let Pi(f) (0 ≤ i ≤ dimM) be the set of periodic points of f with
dimEsp = i. If f ∈ int(PWE), then Pi(f) = ∅ for 1 ≤ i ≤ dimM .

Proof. Since f ∈ int(PWE), there are δ and a finite δ-partition P = {A1, . . .,
An} of M . Since f ∈ int(PWE) by Lemma 4.2, we may assume that there is
a (hyperbolic) saddle periodic point p ∈ Pi(f) for some 1 ≤ i ≤ dimM and we
consider that p is a fixed point for convenience. Since the above finite partition
P covers M , we choose Ak ∈ P containing p. Then the dynamic P-ball of p
with respect to f is

ΓP(x) = {y ∈M : fn(y) ∈ P(fn(p)) for all n ≥ 0}
= {y ∈M : fn(y) ∈ P(p) = Ak for all n ≥ 0}
⊂ Ak.

Due to p ∈ Pi(f) for some 1 ≤ i ≤ dimM , there exists the stable manifold
W s(p) of p such that dimW s(p) = i, where W s(p) = {x ∈ M : fn(x) → p as
n→∞}. Let ε > 0 be the one that satisfies ε < δ. We set

C = Bε(p) ∩W s(p) ∩Ak.

Let MC be the normalized Lebesgue measure on C. Define µ̃ ∈M∗(M) by

µ̃(B) = MC (B ∩ C)

for any Borel set B of M . Take c = ε/2 and let

ΦP(p) = {y ∈ Ak : fn(y) ∈ P(fnp) and d(fn(y), fn(p)) ≤ c for all n ≥ 0}
= {y ∈ Ak : fn(y) ∈ P(p) and d(fn(y), p) ≤ c for all n ≥ 0}
= {y ∈ Ak : fn(y) ∈ Ak and d(fn(y), p) ≤ c for all n ≥ 0}.

It is clear that ΦP(p) ⊂ ΓP (p) (see Figure 1).

Figure 1. ΦP(p) ⊂ ΓP (p)
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Since f ∈ int(PWE), we know that

µ̃(ΓP(p)) = 0

for all µ̃ ∈M∗(M). Since ΦP(p) ⊂ ΓP (p), we have

µ̃(ΓP(p)) > µ̃(ΦP(p)) > 0.

This is a contradiction since f ∈ int(PWE). �

For f ∈ C1(M), if Dxf : TxM → Tf(x)M is not injective, then x is called a
singular point for f . Denote by S(f) the set of singularities of f . The following
lemma shows that if a differentiable map f ∈ int(PWE), then M does not
contains any singularities.

Lemma 4.4. If f ∈ int(PWE), then S(f) = ∅.

Proof. Let U(f) be a C1-neighborhood of f such that any g ∈ U(f) is positively
weak measure expansive, that is, there is a finite partition P = {A1, . . . , An}
of M such that µ(ΓP (x)) = 0 for all x ∈ M and all µ ∈ M∗(M). Suppose
that there exists x ∈ S(f). Then by Lemma 4.1, we can construct g ∈ U(f)
possessing a small disk Br0(x) centered at x with radius r0 > 0 such that

- dimBr0(x) = 1,
- Br0(x) ⊂ Ai for some i ∈ {1, . . . , n}, and
- g(Br0(x)) = {g(x)}.

Let MBr0 (x) be the normalized Lebesgue measure on Br0(x), and define

ν ∈M∗(M) by

ν(B) = MBr0 (x)(B ∩Br0(x))

for any Borel set B of M . Since we can check Br0(x) ⊂ ΓgP (y) for all y ∈ Br0(x),
it is clear that ν(ΓgP (x)) = 1 and this is a contradiction to the fact g ∈ U(f). �

End of Proof of Theorem A. Let f ∈ int(PWE). By Lemma 4.2 and Lemma
4.4, f ∈ F1(M) and S(f) = ∅. Then by [3, Proposition 1, Proposition 2] and

Lemma 4.3, Ω(f) = P (f) = P0(f) is hyperbolic and so it is expanding. Then

as in the proof of [9, Lemma 2.8], we can obtain M = P0(f). �

5. Proof of Theorem B

In this section, we introduce a C1-generic differentiable map and prove The-
orem B. A subset G ⊂ C1(M) is residual if G contains the intersection of a
countable family of open and dense subsets of C1(M); in this case G is dense
in C1(M). A property “P” is said to be C1-generic if “P” holds for all differ-
entiable maps which belong to some residual subset of C1(M). We use the ter-
minology for C1-generic f to express “there is a residual subset of G ⊂ C1(M)
such that for any f ∈ G . . ..”.

To prove Theorem B, we need some definitions and lemmas. Denote by
Ph(f) the set of hyperbolic periodic points of f . We say a hyperbolic periodic
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point p of f with period π(p) said to have a θ-weak eigenvalue if there is an
eigenvalue λ of Dfπ(p)(p) such that

(1− θ)π(p) < |λ| < (1 + θ)π(p).

Moreover, we say that the periodic point p has simple real spectrum if all of
its eigenvalues are real and have multiplicity one.

We say that a differentiable map f is Kupka-Smale if f satisfies the following
three conditions.

- The periodic points of f are all hyperbolic.
- If p is a periodic point of f , W s(p) is a 1-1 immersed submanifold.
- If p and q are periodic points of f , W s(p) tW s(q).

Denote by KS(M) the set of all Kupka-Smale differentiable maps (see [15]).
Observe that by Kupka-Smale’s theorem for differentiable maps, for C1-generic
f ∈ C1(M), every p ∈ P (f) is hyperbolic, and thus, such p is source if f is
positively weak measure expansive.

Lemma 5.1. If f ∈ C1(M) is Kupka-Smale positively weak measure expansive,
then Pi(f) = ∅ for (1 ≤ i ≤ dimM), that is, P (f) = P0(f).

Proof. Suppose that f is a Kupka-Smale positively weak measure expansive
differentiable map. If there exists a hyperbolic saddle periodic point p of f , then
we can construct a local stable manifold of p. Using the same way in the proof
of Lemma 4.3, we can define the normalized Lebesgue measure µ̃ ∈M∗(M) on
the local stable manifold satisfying µ̃(ΓP (p)) > 0, where P is a finite partition of
M . Therefore we derive a contradiction, because f is positively weak measure
expansive. �

We introduce a C1 generic properties for differentiable maps which need to
proof Theorem B.

Lemma 5.2. There is a residual set R1 ⊂ C1(M) such that for any f ∈ R1,

(a) for any θ > 0, if for any sufficiently small C1-neighborhood U(f) of
f there exists g ∈ U(f) such that g has a periodic point q of g with a
θ-weak eigenvalue, then there exists p ∈ P (f) with 2θ-weak eigenvalue.

(b) if any sufficiently small C1-neighborhood U(f) of f , there is g ∈ U(f)
having q ∈ P (g) with dimEsq = i (0 ≤ i ≤ dimM), then f also has
p ∈ P (f) with dimEsp = i.

Proof. See [9, Lemma 3.1] and [9, Lemma 3.3]. �

Lemma 5.3. There is a residual set R2 ⊂ C1(M) such that if f ∈ R2 is
positively weak measure expansive, then there exists θ > 0 such that every
hyperbolic periodic point p of f has no θ-weak eigenvalue.

Proof. Let R2 = R1 ∩ KS(M) and let f ∈ R2. Assume that f is a positively
weak measure expansive differentiable map. To derive a contradiction, suppose
that for any θ > 0, there exists p ∈ Ph(f) satisfying Dpf

π(p) has a θ-weak
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eigenvalue λ. By Lemma 4.1, there are g (C1-close to f) and a saddle point
q ∈ Ph(g) with dim(Esq ) = i (1 ≤ i ≤ dimM). Suppose that this dimEsq = i is
a constant. Then there exists r ∈ Ph(f) with dimEsr = i ≥ 1 by Lemma 5.2
(b) and this is a contradiction by Lemma 5.1. �

Proposition 5.4. For any f ∈ R2, if f is a positively weak measure expansive
differentiable map, then P0(f) ∩ S(f) = ∅.

Proof. Let f ∈ R2 be a positively weak measure expansive differentiable map.
To prove this proposition, we suppose that there exists a point p in P0(f)∩S(f).
Then there exists a sequence of periodic points {pn} ⊂ P0(f) with period π(pn)
such that pn → p as n→∞. By Lemma 4.1, we can choose g (C1-close to f)
gπ(pn)(pn) = pn satisfying pn ∈ S(g) with 1 ≤ dimEspn = i ≤ dimM . Then f
also has a hyperbolic saddle periodic point q with dimEsq = i by Lemma 5.2
(b). Since f is Kupka-Smale positively weak measure expansive, we can get a
contradiction by Lemma 5.1. �

Lemma 5.5. For any f ∈ R2, if f is a positively weak measure expansive
differentiable map, then f ∈ F1(M).

Proof. Since f ∈ R2 is a positively weak measure expansive differentiable map,
we can obtain a neighborhood U of P0(f) satisfying U ∩S(f) = ∅ by the above
proposition. On the contrary, if f ∈ R2 is a positively weak measure expansive
differentiable map, then there exists a C1-neighborhood U(f) of f such that
every p ∈ P (g) is hyperbolic for any g ∈ U(f) by Lemma 5.2 and Lemma 5.3,

that is, f ∈ F1(M). So we can get Ω(f) = P (f). �

End of Proof of Theorem B. From the above Lemma 5.1 and Lemma 5.5, we
can draw a conclusion that there is a residual set R2 ⊂ C1(M) such that
for any f ∈ R2, if f is positively weak measure expansive, then f ∈ F(M)

and Ω(f) = P (f) = P0(f). By [3, Proposition 2], P0(f) is hyperbolic that is
expanding. Then by [12, Corollary 2] if for g C1-close to f such that g = f in

U , then Pi(f) = Pi(g) (0 ≤ i ≤ dimM), where U is a neighborhood of Pi(f).

Thus by [9, Lemma 3.8], M = P0(f), that is, f is an expanding map. �
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