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THE LOCAL TIME OF THE LINEAR SELF-ATTRACTING

DIFFUSION DRIVEN BY WEIGHTED FRACTIONAL

BROWNIAN MOTION

Qin Chen, Guangjun Shen, and Qingbo Wang

Abstract. In this paper, we introduce the linear self-attracting diffusion
driven by a weighted fractional Brownian motion with weighting exponent

a > −1 and Hurst index |b| < a + 1, 0 < b < 1, which is analogous to the

linear fractional self-attracting diffusion. For the 1-dimensional process
we study its convergence and the corresponding weighted local time. As

a related problem, we also obtain the renormalized intersection local time
exists in L2 if max{a1 + b1, a2 + b2} < 0.

1. Introduction

Let (Ω,F ,P) be a probability space, {Bt,Ft : t ≥ 0} be a Brownian motion
on Rd (starting in 0 at time 0), and let f : Rd → Rd(d ≥ 1) be a measurable
function. Durrett and Rogers [10] introduced the following stochastic differen-
tial equation

(1.1) Xt = Bt +

∫ t

0

∫ s

0

f(Xs −Xu)duds,

as a model for the shape of a growing polymer, Xt corresponding to the location
of the end of the polymer at time t. Without any assumption on the function f ,
the stochastic differential equation (1.1) defines a self-interacting diffusion, in
the sense that the process X evolves in an environment changing with its prior
trajectory. Mountford and Tarrès [20] call it self-repelling (resp. self-attracting)
if, for all x ∈ Rd, x·f(x) ≥ 0 (resp. ≤ 0), in other words if it is more likely to stay
away from (resp. come back to) the places it has already visited before. Note
that Equation (1.1) has a pathwise unique strong solution if f is assumed to
be Lipschitz continuous (see, for example, Rogers and Williams [21]), it admits
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a unique weak solution if f is locally bounded, using a generalization of Gir-
sanov theorem (see Corollary 3.5.2 in Karatzas and Shreve [19]). Since these
processes are self-attracting, it is particularly interesting to describe the as-
ymptotic behaviour of their paths. Some earlier works developed results on the
boundedness and convergence of such paths. Cranston and Le Jan [8] extended
the model and introduced self-attracting diffusion, where for d = 1 two cases
are studied: the linear interaction where f is a linear function and the constant
interaction in dimension 1, where f(x) = σsign(x) for positive σ, and in both
cases the almost sure convergence of Xt is proved. Herrmann and Roynette [13]
considered some self-attracting diffusions and studied the behaviour of paths
of some self-attracting diffusions when time tends to infinity and generalized
those results in Cranston and Le Jan [8]. Herrmann and Scheutzow [14] gave
some rate of convergence of the path of some self-attracting diffusions. As an
extension of Brownian motion, the fractional Brownian motion exhibits long-
range dependence and self similarity, having stationary increments. It is the
usual candidate to model phenomena in which the self-similarity property can
be observed from the empirical data. Chakravarti and Sebastian [6], Cherayil
and Biswas [7] used the statistical properties of fractional Brownian motion
(long-range dependence, self similarity and stationary increments) to construct
a path integral representation of the conformations of some polymers. Yan, Sun
and Lu [28] introduced the linear fractional self-attracting diffusion driven by a
fractional Brownian motion with Hurst index 1

2 < H < 1, which is analogous to
the linear self-attracting diffusion. On the other hand, many authors have pro-
posed to use more general self-similar Gaussian processes and random fields as
stochastic models. Such applications have raised many interesting theoretical
questions about self-similar Gaussian processes and fields in general. Therefore,
some generalizations of the fractional Brownian motion have been introduced
such as bi-fractional Brownian motion, sub-fractional Brownian motion and
weighted fractional Brownian motion. However, in contrast to the extensive
studies on the fractional Brownian motion, there has been little systematic in-
vestigation on other self-similar Gaussian processes. The main reason for this
is the complexity of dependence structures for self-similar Gaussian processes
which do not have stationary increments.

Motivated by all these results, in this paper, as a natural extension to (1.1)
one may consider the path dependent stochastic differential equation of the
form (it is not difficult to show that the equation admits a unique strong
solution, we will call the solution the linear weighted fractional self-attracting
diffusion)

(1.2) Xa,b
t = Ba,bt − p

∫ t

0

∫ s

0

(Xa,b
s −Xa,b

u )duds+ νt,

with p > 0, ν ∈ Rd and 0 < b < 1, where Ba,b is a d-dimensional weighted
fractional Brownian motion with index a > −1, |b| < a + 1, 0 < b < 1 (the
precise definition is given below in Section 2). We are interested in the study
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of the convergence and local time of the processes given by (1.2) with d = 1.
As a related problem, for the two dimensional process we shall show that the
renormalized intersection local time exists in L2 if max{a1 + b1, a2 + b2} < 0
and obtain the derivative for the renormalized intersection local time.

The rest of this paper is organized as follows. In Section 2 we give details for
the weighted fBm and the related Itô type stochastic integral. In Section 3 we
investigate convergence of the linear weighted fractional self-attracting diffu-
sion. In Section 4, we define the weighted local time of the process and obtain
a Meyer-Tanaka type formula. In Section 5, we show that its renormalized in-
tersection local time exists in L2 if max{a1 + b1, a2 + b2} < 0 for 2-dimensional
process and obtain the derivative for the renormalized intersection local time.

2. Weighted fractional Brownian motion

In this section, we recall some basic results of weighted fractional Brownian
motion. The weighted fractional Brownian motion (wfBm for short) Ba,b with
parameters a > −1, |b| < 1, |b| < a + 1 is a centered and self-similar Gauss-
ian process with long/short-range dependence. It admits the relatively simple
covariance function

(2.1)

Ra,b(t, s) := E
[
Ba,bt Ba,bs

]
=

1

2B(a+ 1, b+ 1)

∫ s∧t

0

ua[(t− u)b + (s− u)b]du, s, t ≥ 0,

where B(·, ·) is the beta function. Clearly, for a = 0, b = 0, Ba,b coincides with
the standard Brownian motion B. For a = 0, (2.1) reduces to

E
[
Ba,bt Ba,bs

]
=

1

2(b+ 1)B(a+ 1, b+ 1)
[tb+1 + sb+1 − |s− t|b+1],

which corresponds to the covariance of the fractional Brownian motion with
Hurst index b+1

2 if −1 < b < 1. Hence, the wfBm is a family of processes
which extend the fractional Brownian motion, perhaps it may be useful in
some applications. This process Ba,b appeared in Bojdecki et al. [4] in a limit
of occupation time fluctuations of a system of independent particles moving
in Rd according to a symmetric α-stable Lévy process (0 < α ≤ 2), started
from an inhomogeneous Poisson configuration with intensity measure dx

1+|x|γ

and 0 < γ ≤ d = 1 < α, a = −γ/α, b = 1 − 1/α, the ranges of values of a
and b being −1 < a < 0 and 0 < b ≤ 1 + a. The process Ba,b also appeared
in Bojdecki et al. [5] in a high density limit of occupation time fluctuations
of the above mentioned particles system, where the initial Poisson configura-
tion has finite intensity measure, with d = 1 < α, a = −1/α, b = 1 − 1/α.
Moreover, the wfBm was first studied by Bojdecki et al. [3], and it is neither a
semimartingale nor a Markov process unless a = 0, b = 0, so many of the pow-
erful techniques from stochastic analysis are not available when dealing with
Ba,b. Recently, Garzón [11] showed that for certain values of the parameters
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the weighted fractional Brownian sheets are obtained as limits in law of oc-
cupation time fluctuations of a stochastic particle model. Shen, Yan and Cui
[23] studied Berry-Esséen bounds and almost sure CLT for quadratic variation
of the wfBm. Shen, Yin and Yan [24] considered least squares estimation for
Ornstein-Uhlenbeck processes driven by the wfBm. Sun, Yan and Zhang [26]
studied the quadratic covariation for a wfBm. Sun and Yan [25] considered the
asymptotic normality associated with some processes, as an application they
study the asymptotic normality of the estimator of parameter. Yan, Wang
and Jing [29] gave some path properties of wfBm. The wfBm has properties
analogous to those of the fractional Brownian motion (self-similarity, long-
range dependence, Hölder paths). However, in comparison with the fractional
Brownian motion, the wfBm has non-stationary increments and satisfies the
following estimates (see Bojdecki et al. [3], Yan et al. [29]):

ca,b(t ∨ s)a|t− s|b+1 ≤ E
[(
Ba,bt −Ba,bs

)2
]
≤ Ca,b(t ∨ s)a|t− s|b+1

for s, t ≥ 0. Thus, Kolmogorov’s continuity criterion implies that the wfBm is
Hölder continuous of order δ for any δ < 1

2 (1 + b). For simplicity throughout
this paper, we let ca,b, Ca,b, Ca,b,θ stand for positive constants depending only
on the subscripts and their value may be different in different appearances. We
can rewrite its covariance as

Ra,b(t, s) =
1

2B(a+ 1, b+ 1)

∫ t∧s

0

ua(t ∨ s− u)bdu+
1

2
(t ∧ s)a+b+1,

which gives

∂2

∂t∂s
Ra,b(t, s) =

b

2B(a+ 1, b+ 1)
(t ∧ s)a|t− s|b−1

for b > 0.
As a Gaussian process, it is possible to construct a stochastic calculus of

variations with respect to Ba,b. We refer to Alós et al [1] and Yan [27] for the
complete descriptions of stochastic calculus with respect to Gaussian processes.
Here we recall only the basic elements of this theory. The crucial ingredient
is the canonical Hilbert space H (is also said to be reproducing kernel Hilbert
space) associated to the wfBm Ba,b which is defined as the closure of the linear
space E generated by the indicator functions {1[0,t], t ∈ [0, T ]} with respect

to the scalar product 〈1[0,t],1[0,s]〉H = Ra,b(t, s). The application E 3 ϕ 7→
Ba,b(ϕ) (Ba,b(ϕ) is a Gaussian process on H, which can be extended to all of
H, such that E[Ba,b(ϕ)Ba,b(ψ)] = 〈ϕ,ψ〉H for all ϕ,ψ ∈ H) is an isometry
from E to the Gaussian space generated by Ba,b. The Hilbert space H can be
written as

H = {ϕ : [0, T ]→ R | ‖ϕ‖H <∞} ,
where

‖ϕ‖2H :=

∫ T

0

∫ T

0

ϕ(t)ϕ(s)φ(t, s)dtds
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with φ(t, s) = b
2B(a+1,b+1) (t ∧ s)a|t − s|b−1, which is just the second partial

derivative of Ra,b(t, s) as calculated above. We can use the subspace |H| of H
which is defined as the set of measurable function ϕ on [0, T ] such that

(2.2) ‖ϕ‖2|H| :=

∫ T

0

∫ T

0

|ϕ(s)||ϕ(r)|φ(s, r)dsdr <∞.

It has been shown that |H| is a Banach space with the norm ‖ϕ‖|H| and E is
dense in |H|.

For b > 0, we denote by S the set of smooth functionals of the form

F = f(Ba,b(ϕ1), . . . , Ba,b(ϕn)),

where f ∈ C∞b (Rn) (f and all its derivatives are bounded) and ϕi ∈ H, i =
1, 2, . . . , n. The Malliavin derivative of a function F ∈ S is given by

Da,bF =

n∑
i=1

∂f

∂xi
(Ba,b(ϕ1), . . . , Ba,b(ϕn))ϕi.

The derivative operator Da,b is then a closable operator from L2(Ω) into
L2(Ω;H). We denote by D1,2 the closure of S with respect to the norm

‖F‖1,2 :=
√
E|F |2 + E‖Da,bF‖2H.

The divergence integral δa,b is the adjoint operator of Da,b. That is, we say
that a random variable u in L2(Ω;H) belongs to the domain of the divergence
operator δa,b, denoted by Dom(δa,b), if E

∣∣〈Da,bF, u〉H
∣∣ ≤ c‖F‖L2(Ω) for every

F ∈ S. In this case δa,b(u) is defined by the duality relationship

(2.3) E
[
Fδa,b(u)

]
= E〈Da,bF, u〉H

for any u ∈ D1,2. We have D1,2 ⊂ Dom(δa,b) and for any u ∈ D1,2

E
[
δa,b(u)2

]
= E‖u‖2H + E

∫
[0,T ]4

Da,b
ξ urD

a,b
η usφ(η, r)φ(ξ, s)dsdrdξdη

≤ E‖u‖2|H| + E

∫
[0,T ]4

|Da,b
ξ ur||Da,b

η us|φ(η, r)φ(ξ, s)dsdrdξdη.

We will use the notation

δa,b(u) =

∫ T

0

usδ
a,bBa,bs

to express the Skorohod integral of a process u, and the indefinite Skorohod

integral is defined as
∫ t

0
usδ

a,bBa,bs = δa,b(u1[0,t]).
Recall that the Malliavin φ-derivative of the function U : Ω → R is defined

in Duncan et al. [9] as follows:

Dφ
sU =

∫ ∞
0

φ(r, s)DrUdr,
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where DrU is the fractional Malliavin derivative at r. Define the space L1,2
φ to

be the set of measurable processes u such that Dφ
t us exists for a.s., t ≥ 0 and

(2.4) ‖u ‖2L1,2
φ

:= E
[ ∫ ∞

0

∫ ∞
0

Dφ
s utD

φ
t usdsdt+

∫ ∞
0

∫ ∞
0

usutφ(s, t)dsdt
]
<∞.

Thus, the integral
∫∞

0
usdB

a,b
s can be well defined as an element of L2(µ) if u

satisfies (2.4). For the integral process ηt =
∫ t

0
usdB

a,b
s , we have

Dφ
s ηt =

∫ t

0

Dφ
s urdB

a,b
r +

∫ t

0

urφ(s, r)dr.

In particular, if u is deterministic, then Dφ
s ηt =

∫ t
0
urφ(s, r)dr. An Itô formula

in the analogous form with respect to wfBms is given. This generalization of
the Itô formula is useful in applications.

Theorem 2.1. Let F∈C2(R) have polynomial growth and let the process X be
given as follows:

dXt = vtdt+ utdB
a,b
t , X0 = x ∈ R,

where u∈L1,2
φ and measurable process v satisfies

∫ t
0
|vs|ds < ∞ a.s. Then we

have, for all t ≥ 0

(2.5) F (Xt) = F (x) +

∫ t

0

∂

∂x
F (s,Xs)dXs +

∫ t

0

∂2

∂x2
F (s,Xs)usD

φ
sXsds.

3. Convergence of the linear weighted fractional self-attracting
diffusion

In this section, we investigate convergence of the linear weighted fractional
self-attracting diffusion which is the solution of the (1.2). Using the method of
Cranston and Le Jan [8], the solution to (1.2) can be expressed as

(3.1) Xa,b
t = Xa,b

0 +

∫ t

0

h(t, s)dBa,bs + ν

∫ t

0

h(t, s)ds,

where

(3.2) h(t, s) =

{
1− pse 1

2ps
2 ∫ t

s
e−

1
2pu

2

du, t≥s;
0, t < s

for s, t ≥ 0.
It is easy to obtain that

(3.3) lim
t↑∞

h(t, s) = 1− pse
p
2 s

2

∫ ∞
s

e−
p
2u

2

du := h(s),

which is continuous on [0,∞). It follows from the Itô type formula that

F (Xa,b
t ) = F (0) +

∫ t

0

F ′(Xa,b
s )dXa,b

s +

∫ t

0

F ′′(Xa,b
s )Dφ

sX
a,b
s ds
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= F (0) +

∫ t

0

F ′(Xa,b
s )dXa,b

s

+
b

B(a+ 1, b+ 1)

∫ t

0

F ′′(Xa,b
s )ds

∫ s

0

h(s,m)ma(s−m)b−1dm

for F ∈ C2(R) having polynomial growth.

Theorem 3.1. For the solution Xa,b
t of (1.2), we have

Xa,b
t

L2

−→ Xa,b
∞ ≡

∫ ∞
0

h(s)dBa,bs + ν

∫ ∞
0

h(s)ds, t→∞.

Proof. We have

|h(t, s1)− h(s1)||h(t, s2)− h(s2)|

= |ps1e
p
2 s

2
1

∫ ∞
t

e−
p
2u

2

du||ps2e
p
2 s

2
2

∫ ∞
t

e−
p
2u

2

du|

= p2s1s2e
p
2 (s21+s21)(

∫ ∞
t

e−
p
2u

2

du)2

≤ p2s1s2e
p
2 (s21+s22)(

∫ ∞
t

u

t
e−

p
2u

2

du)2

=
1

t2
s1s2e

p
2 (s21+s22)e−pt

2

for s1, s2 ≤ t and

|
∫ t

0

[h(t, s)− h(s)]ds| =
∫ t

0

pse
p
2 s

2

∫ ∞
t

e−
p
2u

2

duds

≤ p
∫ t

0

se
p
2 s

2

∫ ∞
t

u

t
e−

p
2u

2

duds

=
1

t

∫ t

0

se
p
2 (s2−t2)ds

=
1

pt
(1− e−

p
2 t

2

) ≤ 1

pt
→ 0, t→∞.

It follows from (2.2) that

E|
∫ t

0

[h(t, s)− h(s)]dBa,bs |2(3.4)

=
b

2B(a+ 1, b+ 1)

∫ t

0

∫ t

0

[h(t, s)−h(s)][h(t, r)−h(r)](s∧r)a|s−r|b−1drds

≤ b

2B(a+ 1, b+ 1)

∫ t

0

∫ t

0

sr

t2
e
p
2 (s2+r2)e−pt

2

(s∧r)a|s− r|b−1drds

=
be−pt

2

B(a+ 1, b+ 1)t2

∫ t

0

∫ s

0

sre
p
2 (s2+r2)(s∧r)a(s− r)b−1drds



554 Q. CHEN, G. SHEN, AND Q. WANG

≤ be−pt
2

B(a+ 1, b+ 1)t2

∫ t

0

sa+2eps
2

ds

∫ s

0

(s− r)b−1dr

=
e−pt

2

B(a+ 1, b+ 1)t2

∫ t

0

sa+b+2eps
2

ds

≤ e−pt
2

B(a+ 1, b+ 1)t2
ta+b+1

∫ t

0

seps
2

ds

=
e−pt

2

2B(a+ 1, b+ 1)
ta+b−1(

1

p
ept

2

− 1)

≤ ta+b−1

2pB(a+ 1, b+ 1)
→ 0, t→∞.

This proves

E|Xa,b
t −Xa,b

∞ |2 ≤ 2E|
∫ t

0

[h(t, s)− h(s)]dBa,bs |2

+ 2|
∫ t

0

[h(t, s)− h(s)]ds|2 → 0, t→∞.

This completes the proof. �

Theorem 3.2. The solution Xa,b
t of (1.2) converges to Xa,b

∞ almost surely as
t→∞.

Proof. Note that

Xa,b
t −Xa,b

∞

=

∫ t

0

[h(t, s)− h(s)]dBa,bs −
∫ ∞
t

h(s)dBa,bs + ν(

∫ t

0

h(t, s)ds−
∫ ∞

0

h(s)ds)

≡ Y a,bt −
∫ ∞
t

h(s)dBa,bs + ν(

∫ t

0

h(t, s)ds−
∫ ∞

0

h(s)ds), t ≥ 0.

In order to complete the proof of Theorem, it only needs to be proved that

Y a,bt converges to 0 almost surely as t→∞.

Let Za,bn,k = Y a,b
n+ k

n

, 0 ≤ k < n. Then Za,bn,k is Gaussian, and by (3.4) we have

E[(Za,bn,k)2] = E[|
∫ n+ k

n

0

[h(n+
k

n
, s)− h(s)]dBa,bs |2]

≤ 1

2pB(a+ 1, b+ 1)
na+b−1

and for any ε > 0

P (|Za,bn,k| > ε) =
2√
2πσ

∫ ∞
ε

e−
t2

2σ2 dt ≤ 2√
2πσ

∫ ∞
ε

t

ε
e−

t2

2σ2 dt
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=
2σ√
2πε

e−
ε2

2σ2 ≤ n
1
2 (a+b−1)e−

ε2pB(a+1,b+1)

na+b−1

ε
√
πpB(a+ 1, b+ 1)

.

On the other hand, let Rn,ks = Y a,b
n+ k+s

n

−Y a,b
n+ k

n

, s ∈ (0, 1). Then Rn,ks , 0 ≤ s ≤ 1

is Gaussian and

E[(Rn,ks −Rn,ks′ )2] = E[(Y a,b
n+ k+s

n

− Y a,b
n+ k+s′

n

)2].

We first calculate

E[(Y a,bt1 − Y
a,b
t2 )2]

= E

[(∫ t1

0

[h(t1, s)− h(t2, s)]dB
a,b
s +

∫ t2

t1

[h(s)− h(t2, s)]dB
a,b
s

)2 ]
≤ 2

(
E(

∫ t1

0

[h(t1, s)− h(t2, s)]dB
a,b
s )2 + E(

∫ t2

t1

[h(t2, s)− h(s)]dBa,bs )2

)
:= 2(A1 +A2),

where

A1 =

∫ t1

0

∫ t1

0

[h(t1, u)− h(t2, u)][h(t1, v)− h(t2, v)]
b(u∧v)a|u− v|b+1

2B(a+ 1, b+ 1)
dudv

≤ b

2B(a+1, b+1)
e−pt

2
1(t2−t1)2

∫ t1

0

∫ t1

0

p2uve
1
2p(u

2+v2)(u∧v)a|u−v|b−1dudv

=
b

2B(a+ 1, b+ 1)
e−pt

2
1(t2 − t1)2[

∫ t1

0

∫ v

0

p2uve
1
2p(u

2+v2)ua(v − u)b−1dudv

+

∫ t1

0

∫ u

0

p2uva+1e
1
2p(u

2+v2)(u− v)b−1dudv]

≤ b

2B(a+ 1, b+ 1)
e−pt

2
1(t2 − t1)2[

∫ t1

0

p2vepv
2

dv

∫ v

0

ua+1(v − u)b−1du

+

∫ t1

0

p2uepu
2

du

∫ u

0

va+1(u− v)b−1dv]

≤ b

2B(a+ 1, b+ 1)
e−pt

2
1(t2 − t1)2[

∫ t1

0

p2va+2epv
2

dv

∫ v

0

(v − u)b−1du

+

∫ t1

0

p2ua+2epu
2

du

∫ u

0

(u− v)b−1dv]

=
b

2B(a+1, b+1)
e−pt

2
1(t2−t1)2[

p

b

∫ t1

0

pva+b+2epv
2

dv+
p

b

∫ t1

0

pua+b+2epu
2

du]

≤ b

2B(a+ 1, b+ 1)
e−pt

2
1(t2 − t1)2 p

b
ta+b+1
1 ept

2
1

=
p

2B(a+ 1, b+ 1)
ta+b+1
1 (t2 − t1)2,
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and

A2 =

∫ t2

t1

∫ t2

t1

p2uve
1
2p(u

2+v2)(

∫ ∞
t2

e−
1
2pξ

2

dξ)2φ(u, v)dudv

≤ e−pt
2
2

(pt2)2
p2t22e

at22

∫ t2

t1

∫ t2

t1

φ(u, v)dudv

≤ Ca,b(t2∨t1)a|t2 − t1|b+1.

Let t1 = n+ k+s′

n , t2 = n+ k+s
n , we can easily obtain

E[(Rn,ks −Rn,ks′ )2]

≤ Ca,b,p[(n+
k + s

n
)a+b+1(

s′ − s
n

)2 + (n+
k + s∨s′

n
)a|s

′ − s
n
|b+1]

= Ca,b,p|
s′ − s
n
|b+1(s′∨s)a(

1

(s′∨s)a
(n+

k + s

n
)a+b+1|s

′ − s
n
|1−b

+ (
n

s′∨s
+
k + s∨s′

n(s′∨s)
)a)

≤ Ca,b,p(n
a+b−1 + na−b−1)E(Ba,bs −B

a,b
s′ )2.

For any ε > 0, it follows from Slepian’s Lemma and Markov’s inequality that

P ( sup
0≤s≤1

|Rn,ks | > ε) ≤ P (
√
Ca,b,pna+b−1 + na−b−1 sup

0≤s≤1
|Ba,bs | > ε)

≤
Ca,b,p(n

a+b−1 + na−b−1)E[sup0≤s≤1 |Ba,bs |2]

ε2

≤ Ca,b,p(n
a+b−1 + na−b−1)

ε2
.

Thus, the result holds due to the Borel-Cantelli Lemma and

{ sup
n+ k

n<t<n+ k+1
n

|Yt| > ε} ⊆ {|Za,bn,k| > ε/2} ∪ { sup
0≤s≤1

|Rn,ks | > ε/2}

for all k, n ≥ 0. This completes the proof. �

4. Local time and Meyer-Tanaka type formula

In this section, we consider the linear weighted fractional self-attracting

diffusion Xa,b = {Xa,b
t , 0 ≤ t ≤ T} with ν = 0. The main goals are to study

the local time and weighted local time of the process and get the Meyer-Tanaka
type formula.

For 0 ≤ s ≤ t ≤ T , let

σ2
t ≡ E[(Xa,b

t )2] =

∫ t

0

∫ t

0

h(t, u)h(t, v)φ(u, v)dudv.

Then

(4.1) e−
p
2 t

2

ta+b+1 ≤ σ2
t ≤ ta+b+1,
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since ∫ t

0

∫ t

0

φ(u, v)dudv = ta+b+1, e−
p
2 (t2−s2) ≤ h(t, s) ≤ 1.

Let

(4.2)

σ2
t,s ≡ E[(Xa,b

t −Xa,b
s )2]

=

∫ t

0

∫ t

0

[h(t, u)− h(s, u)][h(t, v)− h(s, v)]φ(u, v)dudv.

Lemma 4.1. For any 0 ≤ s ≤ t, we have

(4.3) cp,a,b,T t
a(t− s)b+1 ≤ σ2

t,s ≤ Cp,a,b,T ta(t− s)b+1,

where Cp,a,b,T , cp,a,b,T > 0 are two constants depending on p, a, b, T .

Proof. Obviously, we have

σ2
t,s =

∫ t

0

∫ t

0

[h(t, u)− h(s, u)][h(t, v)− h(s, v)]φ(u, v)dudv

=

∫ t

s

∫ t

s

h(t, u)h(t, v)φ(u, v)dudv

+

∫ s

0

∫ t

s

h(t, u)[h(t, v)− h(s, v)]φ(u, v)dudv

+

∫ t

s

∫ s

0

[h(t, u)− h(s, u)]h(t, v)φ(u, v)dudv

+

∫ s

0

∫ s

0

[h(t, u)− h(s, u)][h(t, v)− h(s, v)]φ(u, v)dudv

= ∆[s,t]2 + ∆[s,t]×[0,s] + ∆[0,s]×[s,t] + ∆[0,s]2 .

For any 0 ≤ s ≤ t, we have

∆[s,t]×[0,s] = ∆[0,s]×[s,t]

= −(

∫ t

s

e−
p
2w

2

dw)

∫ s

0

pue
p
2u

2

du

∫ t

s

h(t, v)φ(u, v)dv,

and

∆[0,s]2 = 2(

∫ t

s

e−
p
2w

2

dw)2

∫ s

0

p2ue
p
2u

2

du

∫ u

0

ve
p
2 v

2

φ(u, v)dv.

On the one hand,

∆[0,s]2 =
b

B(a+1, b+1)
p2(

∫ t

s

e−
p
2w

2

dw)2

∫ s

0

ue
p
2u

2

du

∫ u

0

ve
p
2 v

2

va(u−v)b−1dv

≤ b

B(a+1, b+1)
p2e−ps

2

(t− s)2

∫ s

0

ua+2epu
2

du

∫ u

0

(u− v)b−1dv

=
1

B(a+1, b+1)
p2e−ps

2

(t− s)2

∫ s

0

ua+b+2epu
2

du
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≤ 1

B(a+1, b+1)
p2e−ps

2

(t− s)2eps
2

s2

∫ s

0

ua+bdu

=
1

(a+b+1)B(a+1, b+1)
p2(t− s)2sa+b+3.

On the other hand,

∆[0,s]2 ≥
b

B(a+1, b+1)
p2e−pT

2

(t− s)2

∫ s

0

ue
p
2u

2

du

∫ u

0

ve
p
2 v

2

(u− v)b−1vadv

≥ b

B(a+1, b+1)
p2e−pT

2

(t− s)2

∫ s

0

∫ u

0

va+2(u− v)b−1dvdu

=
b

B(a+1, b+1)
p2e−pT

2

(t− s)2B(a+ 3, b)

∫ s

0

ua+b+2du

=
bB(a+3, b)

(a+b+3)B(a+1, b+1)
p2e−pT

2

(t− s)2sa+b+3,

which gives

ca,bp
2e−pT

2

(t− s)2sa+b+3 ≤ ∆[0,s]2 ≤ Ca,bp2(t− s)2sa+b+3.

Similarly, we have

∆[s,t]2 =

∫ t

s

∫ t

s

h(t, u)h(t, v)φ(u, v)dudv

≤
∫ t

s

∫ t

s

φ(u, v)dudv

=

∫ t

s

∫ t

s

b(u∧v)a|u− v|b−1dudv

=

∫ t

s

∫ v

s

bua(v − u)b−1dudv +

∫ t

s

∫ t

v

bva(u− v)b−1dudv

=

∫ t

s

∫ t

u

bua(v − u)b−1dvdu+

∫ t

s

∫ t

v

bva(u− v)b−1dudv

= 2

∫ t

s

ua(t− u)bdu

≤ C2(sa∨ta)(t− s)b+1,

and

∆[s,t]2 ≥
∫ t

s

∫ t

s

e−
p
2 (t2−u2)e−

p
2 (t2−v2)b(u∧v)a|u− v|b−1dudv

≥ be−p(t
2−s2)

∫ t

s

∫ t

s

(u∧v)a|u− v|b−1dudv

= 2e−p(t
2−s2)

∫ t

s

ua(t− u)bdu
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≥ 2(sa∧ta)e−p(t
2−s2)

∫ t

s

(t− u)bdu

= C1(sa∧ta)(t− s)b+1e−p(t
2−s2),

which gives

C1(sa∧ta)(t− s)b+1e−p(t
2−s2) ≤ ∆[s,t]2 ≤ C2(sa∨ta)(t− s)b+1.

It is easy to obtain that

lim
s↑t

∆[s,t]×[0,s]

ta(t− s)b+1
= 0, lim

s↓0

∆[s,t]×[0,s]

ta(t− s)b+1
= 0.

Hence

lim
s↑t

σ2
t,s

ta(t− s)b+1
= Ca,b,T , ca,b,T ≤ lim

s↓0

σ2
t,s

ta(t− s)b+1
≤ Cp,a,b,T .

So we have

cp,a,b,T t
a(t− s)b+1 ≤ σ2

t,s ≤ Cp,a,b,T ta(t− s)b+1.

This completes the proof. �

From the Lemma above, we see that∫ t

0

∫ t

0

[E(Xa,b
u −Xa,b

v )2]−
1
2 dudv <∞

holds for all t ≥ 0, and combining this with Berman [2, 18], the solution Xa,b

of (1.2) has continuous local time Lxt , t ≥ 0, x ∈ R such that

Lxt = lim
ε↓0

1

2ε

∫ t

0

1[x−ε,x+ε](X
a,b
s )ds =

∫ t

0

δ(Xa,b
s − x)ds,

where δ(Xa,b
s − ·) denotes the delta function of Xa,b

s .
For t ≥ 0, x ∈ R, put

Lxt =
b

B(a+ 1, b+ 1)

∫ t

0

δ(Xa,b
s − x)ds

∫ s

0

h(s,m)sa(s−m)b+1dm.

Then Lxt is well-defined and Lxt =
∫ t

0
δ(Xa,b

s −x)Dφ
sX

a,b
s ds. The process (Lxt )t≥0

is called the weighted local time of Xa,b at x ∈ R.

Lemma 4.2 (Hu and Øksendal [15]). Let Y be normally distributed with mean
0 and variance σ2(σ > 0). Then the delta function δ(Y −·) of Y exists uniquely
and we have

(4.4) δ(Y − x) =
1

2π

∫
R
eiξ(Y−x)dξ, x ∈ R.
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Proposition 4.3. Assume that t ∈ [0, T ]. Then Lxt and Lxt are square inte-
grable for all x ∈ R and

(4.5) E[Lxt ]2 ≤ Cp,a,b,T t1−(a+b),

(4.6) E[Lxt ]2 ≤ Cp,a,b,T t1−(a+b).

Proof. It follows from Lemma 4.2 that

E[(Lxt )2] ≤ 1

(2π)2

∫ t

0

∫ t

0

dudv

∫
R2

E[ei(ξX
a,b
u +ηXa,bv )]dξdη

≤ 2

(2π)2

∫ t

0

du

∫ u

0

dv

∫
R2

e−
1
2V ar(ξX

a,b
u +ηXa,bv )dξdη.

By local nondeterminacy of the process Xa,b, we have

Var(ξXa,b
u + ηXa,b

v ) ≥ k[ξ2σ2
u,v + (η + ξ)2σ2

v ]

for a positive k > 0. Hence, by Lemma 4.1,

E[(Lxt )2] ≤ 2

(2π)2

∫ t

0

du

∫ u

0

dv

∫
R2

e−
k
2 (ξ2σ2

u,v+(η+ξ)2σ2
v)dξdη

≤ 1

kπ

∫ t

0

du

∫ u

0

1

σu,vσv
dv

≤ 1

kπcp,a,b,T

∫ t

0

du

∫ u

0

1

u
a
2 (u− v)

b+1
2 v

a+b+1
2

dv

≤ Cp,a,b,T t1−(a+b).

In fact, when a > 0, we have∫ t

0

du

∫ u

0

dv

u
a
2 (u− v)

b+1
2 v

a+b+1
2

≤
∫ t

0

du

∫ u

0

dv

(u− v)
a+b+1

2 v
a+b+1

2

=

∫ t

0

1

v
a+b+1

2

dv

∫ t

v

du

(u− v)
a+b+1

2

=
2

2− (a+ b+ 1)

∫ t

0

1

v
a+b+1

2

(t− v)1− a+b+1
2 dv

≤ Ca,bt2−(a+b+1).

When a < 0, we have∫ t

0

du

∫ u

0

dv

u
a
2 (u− v)

b+1
2 v

a+b+1
2

≤
∫ t

0

du

∫ u

0

dv

u
a+b+1

2 v
a+b+1

2

≤ Ca,bt2−(a+b+1).
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We obtain (4.5). Similarly, we can show that the inequality (4.6) holds as
follows

E[Lxt ]2 =
b2

B2(a+ 1, b+ 1)
E
[ ∫ t

0

δ(Xa,b
s − x)ds

∫ s

0

h(s,m)sa(s−m)b+1dm
]2

≤ b2

(2π)2B2(a+ 1, b+ 1)

∫ t

0

∫ t

0

dudv

∫
R2

Eei(ξXu+ηXv)dξdη

·
∫ u

0

∫ v

0

h(u,m1)h(v,m2)uava(u−m1)b+1(v −m2)b+1dm1dm2

≤ Cp,a,b,T
∫ t

0

∫ t

0

dudv

∫
R2

Eei(ξXu+ηXv)dξdη

≤ Cp,a,b,T t1−(a+b). �

Theorem 4.4. Suppose that Φ : R+ → R is a convex function having polyno-
mial growth. Then

(4.7) Φ(Xa,b
t ) = Φ(z) +

∫ t

0

D−Φ(Xa,b
s )dXa,b

s +

∫
R
Lxt µΦ(dx),

where Xa,b is the solution of (1.2) with a > −1, |b| < a+ 1, 0 < b < 1, Xa,b
0 =

z, ν = 0 and L is the weighted local time of Xa,b, D−Φ is the left derivative of
Φ and the signed measure µΦ is defined by

µΦ([a, b]) = D−Φ(b)−D−Φ(a), a < b, a, b ∈ R.

Proof. Let

Φε(x) =

∫
R
pε(x− y)Φ(y)dy, ε > 0, x ∈ R,

where pε(x) = 1√
2πε

e−
x2

2ε . Then Φε ∈ C2 and

lim
ε↓0

Φε(x) = Φ(x), lim
ε↓0

Φ′ε(x) = D−Φ(x)

for all x ∈ R. Hence for any ε > 0

Φε(X
a,b
t ) = Φε(z) +

∫ t

0

Φ′ε(X
a,b
s )dXa,b

s +
b

B(a+ 1, b+ 1)

∫ t

0

Φ′′ε (Xa,b
s )h̃(s)ds,

where h̃(s) =
∫ s

0
h(s,m)ma(s−m)b−1dm. On the other hand,

Φε(X
a,b
t )

a.s.−→ Φ(Xa,b
t ), ε→ 0,

and ∫ t

0

Φ′ε(X
a,b
s )dXa,b

s
a.s.−→

∫ t

0

D−Φ(Xa,b
s )dXa,b

s , ε→ 0.

Finally, we have∫ t

0

Φ′′ε (Xa,b
s )h̃(s)ds =

∫ t

0

dsh̃(s)

∫
R

Φ′′ε (x)δ(Xa,b
s − x)dx
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→ B(a+ 1, b+ 1)

b

∫
R
Lxt µΦ(dx), ε→ 0.

This completes the proof. �

Corollary 4.5. Let Xa,b be the solution to (1.2) with parameter a > −1, |b| <
a + 1, 0 < b < 1, Xa,b

0 = z, ν = 0 and let L be the weighted local time of Xa,b.
Then the Tanaka formula

(4.8) |Xa,b
t − x| = |X

a,b
0 − x|+

∫ t

0

sign(Xa,b
s − x)dXa,b

s + Lxt

holds for all x ∈ R.

5. Derivative for the intersection local time

In this section, let Ba,b,jt , j = 1, 2 are two independent wfBms. We will
study the renormalized intersection local time of the linear weighted fractional
self-attracting diffusion Xa,b = (Xa,b,1, Xa,b,2) on R2, where Xa,b,j(j = 1, 2) is
the solution of the equation

Xa,b,j
t = Ba,b,jt − p

∫ t

0

∫ u

0

(Xa,b,j
u −Xa,b,j

v )dvdu, 0 ≤ t ≤ T,

with p > 0. The renormalized intersection local time lT of the process

Xa,b
t = (Xa,b,1

t , Xa,b,2
t ), 0 ≤ t ≤ T

is formally defined as

lT − E[lT ] =

∫ T

0

∫ T

0

δ(Xa1,b1
t −Xa2,b2

s )dsdt

− E
[ ∫ T

0

∫ T

0

δ(Xa1,b1
t −Xa2,b2

s )dsdt
]
,

where δ is the delta function. For ε > 0, we define

lε,T =

∫ T

0

∫ T

0

pε(X
a1,b1
t −Xa2,b2

s )dsdt,

where

pε(x) =
1√
2πε

e−
|x|2
2ε , x ∈ R2

is the heat kernel.
In order to obtain the convergence of lε,T − E[lε,T ], we need some lemmas.
For 0 ≤ s ≤ t, 0 ≤ s′ ≤ t′. Denote

λt,s = E(Xa1,b1,1
t −Xa2,b2,1

s )2 = ta1+b1+1 + sa2+b2+1,

µ = E(Xa1,b1,1
t −Xa2,b2,1

s )(Xa1,b1,1
t′ −Xa2,b2,1

s′ ),

and

d(s, t, s′, t′) = λs,tλs′,t′ − µ2.
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Then, from Shen and Chen [22] we can establish the following lemmas.

Lemma 5.1. (1) For 0 < s < s′ < t < t′ < T or 0 < s < t < s′ < t′ < T ,
we have

(5.1) d(s, t, s′, t′)≥C(sa2+b2+1 + ta1+b1+1)(sa2(s′− s)1+b2 + (t′)a1(t′− t)1+b1).

(2) For 0 < s′ < s < t < t′ < T , we have

(5.2) d(s, t, s′, t′)≥C((s′)a2+b2+1+ta1+b1+1)(sa2(s−s′)1+b2 +(t′)a1(t′−t)1+b1).

Lemma 5.2. Let λt,s and µ be as above. Then∫
T

µ2dsdtds′dt′

d(s, t, s′, t′)(λt,sλt′,s′)
<∞,

if max{a1 + b1, a2 + b2} < 0.

Proof. In fact,

µ = EXa1,b1
t Xa1,b1

t′ + EXa2,b2
s Xa2,b2

s′

≤
∫ t

0

∫ t′

0

φ(u, v)dvdu+

∫ s

0

∫ s′

0

φ(u, v)dvdu

≤ 1

2
(ta1+b1+1 + (t′)a1+b1+1 + sa2+b2+1 + (s′)a2+b2+1).

For 0 < s < s′ < t < t′ < T , we have∫
T

µ2dsdtds′dt′

d(s, t, s′, t′)(λt,sλt′,s′)

≤
∫
T

µ2dsdtds′dt′

ta1+ 1
2 (b1+1)(t′)a1+b1+1sa2+ 1

2 (b2+1)(s′)a2+b2+1|t− t′| 12 (b1+1)|s− s′| 12 (b2+1)

< ∞
holds for max{a1 + b1, a2 + b2} < 0. Similarly, we can estimate the inequality
holds for 0 < s < t < s′ < t′ < T and 0 < s′ < s < t < t′ < T . Thus, the
Lemma follows. �

Theorem 5.3. The random variable lε,T − E[lε,T ] converges in L2 as ε → 0
if max{a1 + b1, a2 + b2} < 0.

Proof. Clearly, as ε→ 0, lε,T − E[lε,T ] converges in L2 if and only if

(5.3) Var(lε,T ) = E[(lε,T )2]− [E(lε,T )]2

tends to a constant. Next, we will prove Var(lε,T ) converges as ε → 0. Note
that

(5.4) lε,T =
1

2π2

∫ T

0

∫ T

0

∫
R2

ei〈ξ,X
a1,b1
t −Xa2,b2s 〉e−ε

|ξ|2
2 dξdsdt,

since

pε(x) =
1

(2π)2

∫
R2

ei〈ξ,x〉e−ε
|ξ|2
2 dξ.
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Combining this with the facts 〈ξ,Xa1,b1
t −Xa2,b2

s 〉∼N(0, |ξ|2λt,s) and

E[ei〈ξ,X
a1,b1
t −Xa2,b2s 〉] = e−

1
2 |ξ|

2λt,s ,∫
R2

e−
1
2 |ξ|

2(λt,s+ε)dξ =
2π

λt,s + ε
,

we have

E(lε,T ) = 2

∫ T

0

∫ t

0

E[pε(X
a1,b1
t −Xa2,b2

s )]dsdt

=
1

π

∫ T

0

∫ t

0

(λt,s + ε)−1dsdt.

(5.5)

Denote T = {(s, t, s′, t′) : 0 < s < t < T, 0 < s′ < t′ < T}, then

E[(lε,T )2]

=
1

4π4

∫
T

∫
R4

Eei〈ξ,X
a1,b1
t −Xa2,b2s 〉+i〈η,Xa1,b1

t′ −Xa2,b2
s′ 〉e−ε

|ξ|2+|η|2
2 dξdηdsdtds′dt′.

Note that

〈ξ,Xa1,b1
t −Xa2,b2

s 〉+ 〈η,Xa1,b1
t′ −Xa2,b2

s′ 〉∼N(0, |ξ|2λt,s + 2µ〈ξ, η〉+ |η|2λt′,s′)

for any ξ, η ∈ R2, so

E[(lε,T )2] =
1

4π4

∫
T

∫
R4

e−
1
2 ((λt,s+ε)|ξ|2+2µ〈ξ,η〉+(λt′,s′+ε)|η|

2)dξdηdsdtds′dt′

=
1

4π2

∫
T
((λt,s + ε)(λt′,s′ + ε)− µ2)−1dsdtds′dt′

for all ε > 0. It follows from (5.5) that

E[(lε,T )2]− [E(lε,T )]2

=
1

π2

∫
T
[((λt,s + ε)(λt′,s′ + ε)− µ2)−1 − ((λt,s + ε)(λt′,s′ + ε))−1]dsdtds′dt′

=
1

π2

∫
T

µ2dsdtds′dt′

((λt,s + ε)(λt′,s′ + ε)− µ2)(λt,s + ε)(λt′,s′ + ε)
.

Hence, this completes the proof by Lemma 5.2. �

Last, we will study the derivative of the renormalized intersection local
time of the linear weighted self-attracting diffusion Xa1,b1 , Xa2,b2 on R2, where
Xaj ,bj (j = 1, 2) is the solution of the equation

X
aj ,bj
t = B

aj ,bj
t − p

∫ t

0

∫ u

0

(Xaj ,bj
u −Xaj ,bj

v )dvdu, 0 ≤ t ≤ T,

with p > 0 and B
aj ,bj
t , j = 1, 2 are two independent wfBms. Then we have

X
aj ,bj
t =

∫ t

0

h(t, s)dBaj ,bjs , j = 1, 2
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from Section 3, and for any s, t ≥ 0

h(t, s) =

{
1− pse 1

2ps
2 ∫ t

s
e−

1
2pu

2

du, t≥s,
0, t < s.

Denote

l′ε,T =

∫ T

0

∫ t

0

p′ε(X
a1,b1
t −Xa2,b2

s )dsdt.

Recall that the process

l′T − E[l′T ] :=

∫ T

0

∫ t

0

δ0(Xa1,b1
t −Xa2,b2

s )dsdt

− E
[ ∫ T

0

∫ t

0

δ0(Xa1,b1
t −Xa2,b2

s )dsdt]

is called the derivative for the renormalized intersection local time of the pro-

cesses X
aj ,bj
t , j = 1, 2, 0 ≤ t ≤ T. For the derivative of self-intersection local

time of fractional Brownian motion, we can see Yan et al. [2], Yan [27], Yan
and Yu [30], Jung and Markowsky [17, 18], Jaramillo and Nualart [16], Guo et
al. [12]. Now, the main object of this section is to explain and prove Theorem
5.4.

Theorem 5.4. The random variable l′ε,T −E[l′ε,T ] converges in L2 as ε tends

to zero if max{b1, b2, a1 + b1, a2 + b2} < 1
3 .

Proof. Clearly, as ε tends to zero, l′T − E[l′T ] converges in L2 if and only if

(5.6) Var(l′ε,T ) = E[(l′ε,T )2]− (E(l′ε,T ))2

tends to constant. Now let us show that Var(l′ε,T ) converges as ε tends to zero.
Using the classical equality

pε(x) =
1

2π

∫
R
eiξxe−ε

ξ2

2 dξ,

one can obtain

(5.7) l′ε,T =
1

π

∫ T

0

∫ t

0

∫
R
eiξ(X

a1,b1
t −Xa2,b2s )e−ε

ξ2

2 dξdsdt.

Combining this with the facts ξ(Xa1,b1
t −Xa2,b2

s )∼N(0, ξ2λt,s) and

E[eiξ(X
a1,b1
t −Xa2,b2s )] = e−

1
2 ξ

2λt,s ,∫
R
ξe−

1
2 ξ

2(λt,s+ε)dξ = 0,

we get

E[l′ε,T ] = −2

∫ T

0

∫ t

0

E(p′ε(X
a1,b1
t −Xa2,b2

s ))dsdt

= − i
π

∫ T

0

∫ t

0

∫
R
ξeiξ(X

a1,b1
t −Xa2,b2s )e−ε

ξ2

2 dξdsdt = 0.

(5.8)



566 Q. CHEN, G. SHEN, AND Q. WANG

Denote T = {(s, t, s′, t′) : 0 < s < t < T, 0 < s′ < t′ < T}. According to the
representation (5.7) we get

E[(l′ε,T )2]

=
1

π2

∫
T

∫
R2

ξηEeiξ(X
a1,b1
t −Xa2,b2s )+iη(X

a1,b1
t′ −Xa2,b2

s′ )e−ε
ξ2+η2

2 dξdηdsdtds′dt′.

Noting that

ξ(Xa1,b1
t −Xa2,b2

s ) + η(Xa1,b1
t′ −Xa2,b2

s′ )∼N(0, ξ2λt,s + 2ξηµ+ η2λt′,s′)

for any ξ, η ∈ R, we can write

E[(l′ε,T )2] =
1

(2π)2

∫
T

∫
R2

ξηe−
1
2 (ξ2λt,s+2ξηµ+η2λt′,s′ )e−ε

ξ2+η2

2 dξdηdsdtds′dt′

= C

∫
T

µdsdtds′dt′

((λt,s + ε)(λt′,s′ + ε)− µ2)
3
2

for all ε > 0. It follows from (5.8) that

E[(l′ε,T )2]− [E(l′ε,T )]2 = C

∫
T

µdsdtds′dt′

((λt,s + ε)(λt′,s′ + ε)− µ2)
3
2

.

So, the Theorem follows from Shen and Chen [22]. �
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[1] E. Alòs, O. Mazet, and D. Nualart, Stochastic calculus with respect to Gaussian

processes, Ann. Probab. 29 (2001), no. 2, 766–801. https://doi.org/10.1214/aop/

1008956692

[2] S. M. Berman, Local nondeterminism and local times of Gaussian processes, Indiana
Univ. Math. J. 23 (1973/74), 69–94. https://doi.org/10.1512/iumj.1973.23.23006

[3] T. Bojdecki, L. G. Gorostiza, and A. Talarczyk, Some extensions of fractional Brown-

ian motion and sub-fractional Brownian motion related to particle systems, Electron.
Comm. Probab. 12 (2007), 161–172. https://doi.org/10.1214/ECP.v12-1272

[4] , Occupation time limits of inhomogeneous Poisson systems of independent par-

ticles, Stochastic Process. Appl. 118 (2008), no. 1, 28–52. https://doi.org/10.1016/
j.spa.2007.03.008

[5] , Self-similar stable processes arising from high-density limits of occupation times

of particle systems, Potential Anal. 28 (2008), no. 1, 71–103. https://doi.org/10.1007/
s11118-007-9067-z

[6] N. Chakravarti and K. L. Sebastian, Fractional Brownian motion model for polymers,

Chem. Phys. Lett. 267 (1997), no. 1–2, 9–13.
[7] J. Cherayil and P. Biswas, Path integral description of polymers using fractional Brow-

nian walks, J. Chem. Phys. 99 (1993), no. 11, 9230–9236.
[8] M. Cranston and Y. Le Jan, Self-attracting diffusions: two case studies, Math. Ann.

303 (1995), no. 1, 87–93. https://doi.org/10.1007/BF01460980

https://doi.org/10.1214/aop/1008956692
https://doi.org/10.1214/aop/1008956692
https://doi.org/10.1512/iumj.1973.23.23006
https://doi.org/10.1214/ECP.v12-1272
https://doi.org/10.1016/j.spa.2007.03.008
https://doi.org/10.1016/j.spa.2007.03.008
https://doi.org/10.1007/s11118-007-9067-z
https://doi.org/10.1007/s11118-007-9067-z
https://doi.org/10.1007/BF01460980


ON THE LINEAR SELF-ATTRACTING DIFFUSION 567

[9] T. E. Duncan, Y. Hu, and B. Pasik-Duncan, Stochastic calculus for fractional Brownian

motion. I. Theory, SIAM J. Control Optim. 38 (2000), no. 2, 582–612. https://doi.

org/10.1137/S036301299834171X

[10] R. T. Durrett and L. C. G. Rogers, Asymptotic behavior of Brownian polymers, Probab.

Theory Related Fields 92 (1992), no. 3, 337–349. https://doi.org/10.1007/BF01300560
[11] J. Garzón, Convergence to weighted fractional Brownian sheets, Commun. Stoch. Anal.

3 (2009), no. 1, 1–14. https://doi.org/10.31390/cosa.3.1.01

[12] J. Guo, Y. Hu, and Y. Xiao, Higher-order derivative of intersection local time for two
independent fractional Brownian motions, J. Theoret. Probab. 32 (2019), no. 3, 1190–

1201. https://doi.org/10.1007/s10959-017-0800-2

[13] S. Herrmann and B. Roynette, Boundedness and convergence of some self-attracting
diffusions, Math. Ann. 325 (2003), no. 1, 81–96. https://doi.org/10.1007/s00208-

002-0370-0

[14] S. Herrmann and M. Scheutzow, Rate of convergence of some self-attracting diffusions,
Stochastic Process. Appl. 111 (2004), no. 1, 41–55. https://doi.org/10.1016/j.spa.

2003.10.012

[15] Y. Hu and B. Øksendal, Chaos expansion of local time of fractional Brownian mo-
tions, Stochastic Anal. Appl. 20 (2002), no. 4, 815–837. https://doi.org/10.1081/SAP-

120006109

[16] A. Jaramillo and D. Nualart, Asymptotic properties of the derivative of self-intersection

local time of fractional Brownian motion, Stochastic Process. Appl. 127 (2017), no. 2,

669–700. https://doi.org/10.1016/j.spa.2016.06.023
[17] P. Jung and G. Markowsky, On the Tanaka formula for the derivative of self-intersection

local time of fractional Brownian motion, Stochastic Process. Appl. 124 (2014), no. 11,

3846–3868. https://doi.org/10.1016/j.spa.2014.07.001
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