References
- W.H. Todt, Characteristics of self-powered neutron detectors used in power reactors, in: In-Core Instrumentation and Core Assessment, Proceedings of a Specialists' Meeting, Mito-shi, Japan, 1996.
- Q. Zhang, X. Liu, B. Deng, et al., Numerical optimization of rhodium selfpowered neutron detector, Ann. Nucl. Energy 113 (2018) 519-525. https://doi.org/10.1016/j.anucene.2017.12.008
- R. Van Nieuwenhove, Effect of fission betas, activated structures and hydrogen on self powered neutron detectors, IEEE Trans. Nucl. Sci. 61 (4) (2013) 2006-2010. https://doi.org/10.1109/TNS.2014.2304563
- A.K. Mishra, S.R. Shimjith, T.U. Bhatt, et al., Dynamic compensation of vanadium self powered neutron detectors for use in reactor control, IEEE Trans. Nucl. Sci. 60 (1) (2013) 310-318. https://doi.org/10.1109/TNS.2012.2229719
- P.S. Rao, A.K. Mahant, S. Rao, et al., Some studies on cobalt and vanadium self powered neutron detectors developed by ECIL, Radiat. Phys. Chem. 51 (4-6) (1998) 453-454. https://doi.org/10.1016/S0969-806X(97)00170-9
- K. Srinivasarengan, L. Mutyam, M.N. Belur, et al., Flux estimation from vanadium and cobalt self powered neutron detectors (SPNDs): nonlinear exact inversion and kalman filter approaches, in: American Control Conference, IEEE, 2012, pp. 318-323.
- M. Alex, M.D. Ghodgaonkar, Development of an inconel self-powered neutron detector for in-core reactor monitoring, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. A 574 (1) (2007) 127-132.
- D. Bi, D. Xu, J. Bu, A unified framework for modeling slow response selfpowered neutron detectors with discrete-time state-space representation, in: International Conference on Advancements in Nuclear Instrumentation Measurement Methods and Their Applications, 2014, pp. 1-5.
- X. Peng, Q. Li, W. Zhao, et al., Robust filtering for dynamic compensation of self-powered neutron detectors, Nucl. Eng. Des. 280 (2014) 122-129. https://doi.org/10.1016/j.nucengdes.2014.09.042
- A.K. Mishra, S.R. Shimjith, T.U. Bhatt, et al., Kalman filter-based dynamic compensator for vanadium self powered neutron detectors, IEEE Trans. Nucl. Sci. 61 (2014).
- Q. Zhang, B. Deng, X. Liu, et al., Deconvolution-based real-time neutron flux reconstruction for self-powered neutron detector, Nucl. Eng. Des. 326 (2018) 261-267. https://doi.org/10.1016/j.nucengdes.2017.11.024
- H. Lee, S. Choi, K.H. Cha, et al., New calculational model for self-powered neutron detector based on Monte Carlo simulation, J. Nucl. Sci. Technol. 52 (5) (2015) 660-669. https://doi.org/10.1080/00223131.2014.975766
- N.P. Goldstein, A Monte-Carlo calculation of the neutron sensitivity of selfpowered detectors, IEEE Trans. Nucl. Sci. 20 (1973) 549-556. https://doi.org/10.1109/TNS.1973.4326961
- W. Lee, G. Cho, K. Kim, et al., A study on the sensitivity of self-powered neutron detectors (SPNDs), IEEE Trans. Nucl. Sci. 48 (4) (2001) 1587-1591. https://doi.org/10.1109/23.958400
- Wolfgang Wiesenack, Comment on ''Vanadium, rhodium, silver and cobalt self-powered neutron detector calculations by RAST-K v2.0", Ann. Nucl. Energy 115 (2018) 633-634. https://doi.org/10.1016/j.anucene.2018.01.050
- R.A. Razak, M. Bhushan, M.N. Belur, et al., Clustering of self powered neutron detectors: combining prompt and slow dynamics, IEEE Trans. Nucl. Sci. 61 (6) (2014) 3635-3643. https://doi.org/10.1109/TNS.2014.2366931
- K. Mivule, C. Turner, Applying moving average filtering for non-interactive differential privacy settings, Procedia Comput. Sci. 36 (6) (2014) 409-415. https://doi.org/10.1016/j.procs.2014.09.013