DOI QR코드

DOI QR Code

Thermal creep effects of aluminum alloy cladding on the irradiation-induced mechanical behavior in U-10Mo/Al monolithic fuel plates

  • Jian, Xiaobin (Institute of Mechanics and Computational Engineering, Department of Aeronautics and Astronautics, Fudan University) ;
  • Ding, Shurong (Institute of Mechanics and Computational Engineering, Department of Aeronautics and Astronautics, Fudan University)
  • 투고 : 2019.08.25
  • 심사 : 2019.09.18
  • 발행 : 2020.04.25

초록

Three-dimensional finite element simulations are implemented for the in-pile thermo-mechanical behavior in U-Mo/Al monolithic fuel plates with different thermal creep rates of cladding involved. The numerical results indicate that the thickness increment of fuel foil rises with the thermal creep coefficient of cladding. The maximum Mises stress of cladding is reduced by ~85% from 344 MPa on the 98.0th day when the creep coefficient of cladding increases from 0.01 to 10.0, due to its equivalent thermal creep strain enlarged by 3.5 times. When the thermal creep coefficient of Aluminum cladding increases from 0 to 1.0, the maximum mesoscale stress of fuel foil varies slightly. At the same time, the peak mesoscale normal stress of fuel foil can reach 51 MPa on the 98.0th day for the thermal creep coefficient of 10, which increases by 60.3% of that with the thermal creep un-occurred in the cladding. The maximum through-thickness creep strain components of fuel foil differ slightly for different thermal creep coefficients of cladding. The dangerous region of fuel foil becomes much closer to the heavily irradiated side when the creep coefficient of cladding becomes 10.0. The creep performance of Aluminum cladding should be optimized for the integrity of monolithic fuel plates.

키워드

참고문헌

  1. H.E. McCoy, J.R. Weir, Influence of irradiation on the tensile properties of the aluminum alloy 6061, Nucl. Sci. Eng. 25 (1966) 319-327. https://doi.org/10.13182/NSE66-A18551
  2. D.B. Lee, K.H. Kim, C.K. Kim, Thermal compatibility studies of unirradiated-Mo alloys dispersed in aluminum, J. Nucl. Mater. 250 (1997) 79-82. https://doi.org/10.1016/S0022-3115(97)00252-3
  3. M.K. Meyer, G.L. Hofman, S.L. Hayes, et al., Low-temperature irradiation behavior of uraniumemolybdenum alloy dispersion fuel, J. Nucl. Mater. 304 (2002) 221-236. https://doi.org/10.1016/S0022-3115(02)00850-4
  4. J. Park, K. Kim, C. Kim, et al., The irradiation behavior of atomized U-Mo alloy fuels at high temperature, Met. Mater. Int. 7 (2001) 151-157. https://doi.org/10.1007/BF03026953
  5. M.K. MEYER, J. GAN, J.F. JUE, et al., IRRADIATION PERFORMANCE OF U-Mo MONOLITHIC FUEL, Nucl. Eng. Technol. 46 (2014) 169-182. https://doi.org/10.5516/NET.07.2014.706
  6. J.L. Schulthess, W.R. Lloyd, B. Rabin, et al., Mechanical properties of irradiated U Mo alloy fuel, J. Nucl. Mater. 515 (2019) 91-106. https://doi.org/10.1016/j.jnucmat.2018.12.025
  7. S. Hu, A.M. Casella, C.A. Lavender, et al., Assessment of effective thermal conductivity in UeMo metallic fuels with distributed gas bubbles, J. Nucl. Mater. 462 (2015) 64-76. https://doi.org/10.1016/j.jnucmat.2015.03.039
  8. D.E. Burkes, A.M. Casella, A.J. Casella, et al., Thermal properties of UeMo alloys irradiated to moderate burnup and power, J. Nucl. Mater. 464 (2015) 331-341. https://doi.org/10.1016/j.jnucmat.2015.04.040
  9. G.Y. Jeong, Y.S. Kim, Y.J. Jeong, et al., Development of PRIME for irradiation performance analysis of U-Mo/Al dispersion fuel, J. Nucl. Mater. 502 (2018) 331-348. https://doi.org/10.1016/j.jnucmat.2018.02.028
  10. Q. Meng, Z. Wang, Creep damage models and their applications for crack growth analysis in pipes: a review, Eng. Fract. Mech. 205 (2019) 547-576. https://doi.org/10.1016/j.engfracmech.2015.09.055
  11. X. Du, Z. Jie, L. Yinghua, Plastic failure analysis of defective pipes with creep damage under multi-loading systems, Int. J. Mech. Sci. 128-129 (2017) 428-444. https://doi.org/10.1016/j.ijmecsci.2017.04.028
  12. J.F. Mao, J.W. Zhu, S.Y. Bao, et al., Creep deformation and damage behavior of reactor pressure vessel under core meltdown scenario, Int. J. Press. Vessel. Pip. 139-140 (2016) 107-116. https://doi.org/10.1016/j.ijpvp.2016.03.009
  13. X. Jian, X. Kong, S. Ding, A mesoscale stress model for irradiated U-10Mo monolithic fuels based on evolution of volume fraction/radius/internal pressure of bubbles, Nucl. Eng. Technol. 51 (2019) 1571-1588.
  14. J. Jue, D.D. Keiser, B.D. Miller, et al., Effects of irradiation on the interface between U-Mo and zirconium diffusion barrier, J. Nucl. Mater. 499 (2018) 567-581. https://doi.org/10.1016/j.jnucmat.2017.10.072
  15. A.M. Casella, D.E. Burkes, P.J. MacFarlan, et al., Characterization of fission gas bubbles in irradiated U-10Mo fuel, Mater. Char. 131 (2017) 459-471. https://doi.org/10.1016/j.matchar.2017.06.007
  16. F. Yan, J. Xiaobin, D. Shurong, Effects of UMo irradiation creep on the thermomechanical behavior in monolithic UMo/Al fuel plates, J. Nucl. Mater. 524 (2019) 209-217. https://doi.org/10.1016/j.jnucmat.2019.07.006
  17. Y.S. Kim, G.L. Hofman, J.S. Cheon, et al., Fission induced swelling and creep of UeMo alloy fuel, J. Nucl. Mater. 437 (2013) 37-46. https://doi.org/10.1016/j.jnucmat.2013.01.346
  18. Y.S. Kim, G.L. Hofman, Fission product induced swelling of UeMo alloy fuel, J. Nucl. Mater. 419 (2011) 291-301. https://doi.org/10.1016/j.jnucmat.2011.08.018
  19. X. Kong, X. Tian, F. Yan, et al., Thermo-mechanical behavior simulation coupled with the hydrostatic-pressure-dependent grain-scale fission gas swelling calculation for a monolithic UMo fuel plate under heterogeneous neutron irradiation, Open Eng. 8 (2018) 243-260. https://doi.org/10.1515/eng-2018-0029
  20. H. Ozaltun, M.H. Herman Shen, P. Medvedev, Assessment of residual stresses on U10Mo alloy based monolithic mini-plates during Hot Isostatic Pressing, J. Nucl. Mater. 419 (2011) 76-84. https://doi.org/10.1016/j.jnucmat.2011.08.029
  21. C. Ayyanar, M. Suresh, P.V. ArunRaj, et al., Modeling and creep strain analysis of aluminum alloy 6061-T6 by creep tensile test, Mater. Today: Proc. 5 (2018) 14345-14354. https://doi.org/10.1016/j.matpr.2018.03.018
  22. J. Jue, D.D. Keiser, C.R. Breckenridge, et al., Microstructural characteristics of HIP-bonded monolithic nuclear fuels with a diffusion barrier, J. Nucl. Mater. 448 (2014) 250-258. https://doi.org/10.1016/j.jnucmat.2014.02.004
  23. J. Rest, A model for the effect of the progression of irradiation-induced recrystallization from initiation to completion on swelling of UO2 and Ue10Mo nuclear fuels, J. Nucl. Mater. 346 (2005) 226-232. https://doi.org/10.1016/j.jnucmat.2005.06.012
  24. M.F. Marchbanks, ANS materials databook, ORNL (1995). ORNL/M-4582.
  25. J. Rest, Y.S. Kim, G.L. Hofman, et al., U-mo Fuels Handbook. Argonne National Laboratory Report ANL-09/31, 2009. Chicago, Illinois.
  26. J. Webb, S. Gollapudi, I. Charit, An overview of creep in tungsten and its alloys, Int. J. Refract. Metals Hard Mater. 82 (2019) 69-80. https://doi.org/10.1016/j.ijrmhm.2019.03.022
  27. J. Hu, T. Fukahori, T. Igari, et al., Modelling of creep rupture of ferritic/austenitic dissimilar weld interfaces under mode I fracture, Eng. Fract. Mech. 191 (2018) 344-364. https://doi.org/10.1016/j.engfracmech.2018.01.001

피인용 문헌

  1. Thermal-fluid-structure coupling analysis on plate-type fuel assembly under irradiation. Part-II Mechanical deformation and thermal-hydraulic characteristics vol.53, pp.5, 2020, https://doi.org/10.1016/j.net.2020.11.031
  2. The role of MgO nanoparticles addition, and γ-irradiation on the microstructural, and tensile properties of Al-1100 alloy vol.55, pp.16, 2020, https://doi.org/10.1177/0021998320983411
  3. Creep fracture parameter C* solutions for semi‐elliptical surface cracks in plates under tensile and bending loads vol.45, pp.1, 2020, https://doi.org/10.1111/ffe.13576
  4. A new method to simulate dispersion plate-type fuel assembly in a multi-physics coupled way vol.166, 2020, https://doi.org/10.1016/j.anucene.2021.108734