DOI QR코드

DOI QR Code

Particle-in-cell simulation feasibility test for analysis of non-collective Thomson scattering as a diagnostic method in ITER

  • Zamenjani, F. Moradi (Faculty of Advanced Sciences and Technologies, University of Isfahan) ;
  • Asgarian, M. Ali (Faculty of Advanced Sciences and Technologies, University of Isfahan) ;
  • Mostajaboddavati, M. (Faculty of Advanced Sciences and Technologies, University of Isfahan) ;
  • Rasouli, C. (Plasma Physics Research School, NSTRI)
  • 투고 : 2018.12.01
  • 심사 : 2019.08.13
  • 발행 : 2020.03.25

초록

The feasibility of the particle-in-cell (PIC) method is assessed to simulate the non-collective phenomena like non-collective Thomson scattering (TS). The non-collective TS in the laser-plasma interaction, which is related to the single-particle behavior, is simulated through a 2D relativistic PIC code (XOOPIC). For this simulation, a non-collective TS is emitted from a 50-50 DT plasma with electron density and temperature of ne = 3.00 × 1013 cm-3 and Te = 1000 eV, typical for the edge plasma at ITER measured by ETS system, respectively. The wavelength, intensity, and FWHM of the laser applied in the ETS system are λi,0 = 1.064 × 10-4 cm, Ii = 2.24 × 1017 erg=s·㎠, and 12.00 ns, respectively. The electron density and temperature predicted by the PIC simulation, obtained from the TS scattered wave, are ne,TS = 2.91 × 1013 cm-3 and Te,TS = 1089 eV, respectively, which are in accordance with the input values of the simulated plasma. The obtained results indicate that the ambiguities rising due to the contradiction between the PIC statistical collective mechanism caused by the super-particle concept and the non-collective nature of TS are resolved. The ability and validity to use PIC method to study the non-collective regimes are verified.

키워드

참고문헌

  1. J.P. Verboncoeur, A.B. Langdon, N.T. Gladd, An object-oriented electromagnetic PIC code, Comput. Phys. Commun. 87 (1995) 199-211. May11. https://doi.org/10.1016/0010-4655(94)00173-Y
  2. J.P. Verboncoeur, Particle simulation of plasmas: review and advances, Plasma Phys. Control. Fusion 47 (2005) A231-A260. https://doi.org/10.1088/0741-3335/47/5A/017
  3. https://ptsg.egr.msu.edu/.
  4. M. Ali Asgarian, A. Parvazian, M. Abbasi, J.P. Verboncoeur, Direct X-B mode conversion for high-national spherical torus experiment in nonlinear regime, Phys. Plasmas 21 (2014), 092516. https://doi.org/10.1063/1.4896706
  5. M. Abbasi, M. Ali Asgarian, S. Sobhanian, Y. Sadeghi, Influence of upper hybrid resonance localized oscillation on X-B mode conversion efficiency for high-${\beta}$ National Spherical Torus Experiment in nonlinear regime, Phys. Plasmas 22 (2015), 062505. https://doi.org/10.1063/1.4922674
  6. M. Abbasi, Y. Sadeghi, S. Sobhanian, M. Ali Asgarian, Excitation of ion Bernstein waves as the dominant parametric decay channel in direct X-B mode conversion for typical spherical torus, Eur. Phys. J. D. 70 (2016), 52. https://doi.org/10.1140/epjd/e2016-60498-9
  7. M. Ali Asgarian, J.P. Verboncoeur, A. Parvazian, R. Trines, Kinetic simulation of the O-X conversion process in dense magnetized plasmas, Phys. Plasmas 20 (2013), 102516. https://doi.org/10.1063/1.4826977
  8. M. Ali Asgarian, M. Abbasi, Excitation of half-integer up-shifted decay channel and quasi-mode in plasma edge for high power electron Bernstein wave heating scenario, AIP Adv. 8 (2018), 045119. https://doi.org/10.1063/1.5020546
  9. D.H. Froula, S.H. Glenzer, N.C. Luhmann Jr., J. Sheffield, Plasma Scattering of Electromagnetic Radiation: Theory and Measurement Techniques, second ed., Elsevier Science, Amsterdam, 2011.
  10. M. Bassan, P. Andrew, G. Kurskiev, E. Mukhin, T. Hatae, G. Vayakis, E. Yatsuka, M. Walsh, Thomson scattering diagnostic systems in ITER, in: 17th International Symposium on Laser-Aided Plasma Diagnostics, Sapporo, Hokkaido, Japan, 27 September-1 October, 2015.
  11. A.W. Desilva, The evolution of light scattering as a plasma diagnostic, Contrib. Plasma Phys. 40 (2000) 23-35. https://doi.org/10.1002/(SICI)1521-3986(200004)40:1/2<23::AID-CTPP23>3.0.CO;2-7
  12. D. Moseev, M. Salewski, M. Garcia-Mu-noz, B. Geiger, M. Nocente, Recent progress in fast-ion diagnostics for magnetically confined plasmas, Rev. Mod. Plasma Phys. 2 (2018) 7. https://doi.org/10.1007/s41614-018-0019-4
  13. A.T. Powis, M.N. Shneider, Particle-in-cell modeling of laser Thomson scattering in low-density plasmas at elevated laser intensities, Phys. Plasmas 25 (2018), 053513. https://doi.org/10.1063/1.5029820
  14. E.E. Salpeter, Electron density fluctuations in a plasma, Phys. Rev. 120 (1960) 1528-1535. https://doi.org/10.1103/PhysRev.120.1528
  15. M. Salewski, O. Asunta, L.-G. Eriksson, H. Bindslev, V. Hynonen, S.B. Korsholm, et al., Comparison of collective Thomson scattering signals due to fast ions in ITER scenarios with fusion and auxiliary heating, Plasma Phys. Control. Fusion 51 (2009), 035006. https://doi.org/10.1088/0741-3335/51/3/035006
  16. M. Salewski, L.-G. Eriksson, H. Bindslev, S.B. Korsholm, F. Leipold, F. Meo, P.K. Michelsen, S.K. Nielsen, Impact of ICRH on the measurement of fusion alphas by collective Thomson scattering in ITER, Nucl. Fusion 49 (2009), 025006. https://doi.org/10.1088/0029-5515/49/2/025006
  17. T. Kondoh, T. Hayashi, Y. Kawano, Y. Kusama, T. Sugie, M. Hirata, Y. Miura, CO2 laser collective Thomson scattering diagnostic of ${\alpha}$-particles in burning plasmas, Fusion Sci. Technol. 51 (2007) 62-64. https://doi.org/10.13182/FST07-A1314
  18. S.L. Prunty, A primer on the theory of Thomson scattering for hightemperature fusion plasmas, Phys. Scr. 89 (2014), 128001. https://doi.org/10.1088/0031-8949/89/12/128001
  19. J. Hawreliak, D. Chambers, S. Glenzer, R.S. Marjoribanks, M. Notley, P. Pinto, O. Renner, P. Sondhauss, R. Steel, S. Topping, E. Wolfrum, P. Young, J.S. Wark, A Thomson scattering post-processor for the MEDUSA hydrocode, J. Quant. Spectrosc. Radiat. Transf. 71 (2001) 383-395. https://doi.org/10.1016/S0022-4073(01)00084-X
  20. S. Sepke, Y.Y. Lau, J.P. Holloway, D. Umstadter, Thomson scattering and ponderomotive intermodulation within standing laser beat waves in plasma, Phys. Rev. E. 72 (2005), 026501. https://doi.org/10.1103/PhysRevE.72.026501
  21. N. Hafz, C.B. Kim, G.H. Kim, H. Suk, Thomson scattering of intense femtosecond laser from relativistic plasma-accelerated electron bunches, in: 3rd Asian Conference, APAC'04, Gyeongju, Korea, 2004. March 22-26.
  22. T. Chuan-Xiang, L. Ren-Kai, H. Wen-Hui, C. Huai-Bi, D. Ying-Chao, D. Qiang, D. Tai-Bin, H. Xiao-Zhong, H. Jian-Fei, L. Yu-Zhen, Q. Hou-Jun, S. Jia-Ru, X. Dao, Y. Li-Xin, Y. Pei-Cheng, A simulation study of Tsinghua Thomson scattering Xray source, Chin. Phys. C 33 (2009) 146-150. https://doi.org/10.1088/1674-1137/33/S2/038
  23. H.C. Wu, J. Meyer-ter-Vehn, B.M. Hegelich, J.C. Fernandez, Nonlinear coherent Thomson scattering from relativistic electron sheets as a means to produce isolated ultrabright attosecond x-ray pulses, Phys. Rev. Spec. Top. Ac. 14 (2011), 070702.
  24. D. Yun-Ze, D. Ying-Chao, Z. ZHen, H. Wen-Hui, Simulation study of a photoinjector for brightness improvement in Thomson scattering x-ray source via ballistic bunching, Chin. Phys. C 38 (2014), 027003. https://doi.org/10.1088/1674-1137/38/2/027003
  25. T. Fang, Z. Bin, H. Dan, X. Jian-Ting, Z. Zong-Qing, C. Lei-Feng, G. Yu-Qiu, Z. Bao-Han, Numerical simulation for all-optical Thomson scattering X-ray source, Chin. Phys. B 23 (2014), 034104. https://doi.org/10.1088/1674-1056/23/3/034104
  26. J.S. Ross, P. Datte, L. Divol, J. Galbraith, D.H. Froula, S.H. Glenzer, B. Hatch, J. Katz, J. Kilkenny, O. Landen, A.M. Manuel, W. Molander, D.S. Montgomery, J.D. Moody, G. Swadling, J. Weaver, Simulated performance of the optical Thomson scattering diagnostic designed for the National Ignition Facility, Rev. Sci. Instrum. 87 (2016) 11E510. https://doi.org/10.1063/1.4959568
  27. D.L. Bruhwiler, R.E. Giacone, J.R. Cary, J.P. Verboncoeur, P. Mardahl, E. Esarey, W.P. Leemans, B.A. Shadwick, Particle-in-cell simulations of plasma accelerators and electron-neutral collisions, Phys. Rev. Spec. Top. Ac. 4 (2001), 101302.
  28. V. Vahedi, J.P. Verboncoeur, XGrafix: an X-windows environment for realtime interactive simulations, in: 14th International Conference on Numerical Simulation of Plasmas, Annapolis, Maryland, 1991.
  29. E. Yatsuka, M. Bassan, T. Hatae, M. Ishikawa, T. Shimada, G. Vayakis, M. Walsh, R. Scannell, R. Huxford, P. Bilkova, P. Bohm, M. Aftanase, K. Itamia, Progresses in development of the ITER edge Thomson scattering system, in: 16th International Symposium on Laser-Aided Plasma Diagnostics, Madison, Wisconsin, U.S.A., 2013, 22-26 September.
  30. T.J. Dolan, Fusion Research Principles, Experiments and Technology, revised ed., Elsevier Science, 2013.
  31. N. Mitchell, A. Devred, P. Libeyre, B. Lim, Savary and the ITER magnet division, the ITER magnets: design and construction status, IEEE Trans. Appl. Supercond. 22 (2012) 4200809. https://doi.org/10.1109/TASC.2011.2174560
  32. T. Matoba, T. Itagaki, T. Yamauchi, A. Funahashi, Analytical approximations in the theory of relativistic Thomson scattering for high temperature fusion plasma, Jpn. J. Appl. Phys. 18 (1979) 1127-1133. https://doi.org/10.1143/JJAP.18.1127