References
- J.P. Verboncoeur, A.B. Langdon, N.T. Gladd, An object-oriented electromagnetic PIC code, Comput. Phys. Commun. 87 (1995) 199-211. May11. https://doi.org/10.1016/0010-4655(94)00173-Y
- J.P. Verboncoeur, Particle simulation of plasmas: review and advances, Plasma Phys. Control. Fusion 47 (2005) A231-A260. https://doi.org/10.1088/0741-3335/47/5A/017
- https://ptsg.egr.msu.edu/.
- M. Ali Asgarian, A. Parvazian, M. Abbasi, J.P. Verboncoeur, Direct X-B mode conversion for high-national spherical torus experiment in nonlinear regime, Phys. Plasmas 21 (2014), 092516. https://doi.org/10.1063/1.4896706
-
M. Abbasi, M. Ali Asgarian, S. Sobhanian, Y. Sadeghi, Influence of upper hybrid resonance localized oscillation on X-B mode conversion efficiency for high-
${\beta}$ National Spherical Torus Experiment in nonlinear regime, Phys. Plasmas 22 (2015), 062505. https://doi.org/10.1063/1.4922674 - M. Abbasi, Y. Sadeghi, S. Sobhanian, M. Ali Asgarian, Excitation of ion Bernstein waves as the dominant parametric decay channel in direct X-B mode conversion for typical spherical torus, Eur. Phys. J. D. 70 (2016), 52. https://doi.org/10.1140/epjd/e2016-60498-9
- M. Ali Asgarian, J.P. Verboncoeur, A. Parvazian, R. Trines, Kinetic simulation of the O-X conversion process in dense magnetized plasmas, Phys. Plasmas 20 (2013), 102516. https://doi.org/10.1063/1.4826977
- M. Ali Asgarian, M. Abbasi, Excitation of half-integer up-shifted decay channel and quasi-mode in plasma edge for high power electron Bernstein wave heating scenario, AIP Adv. 8 (2018), 045119. https://doi.org/10.1063/1.5020546
- D.H. Froula, S.H. Glenzer, N.C. Luhmann Jr., J. Sheffield, Plasma Scattering of Electromagnetic Radiation: Theory and Measurement Techniques, second ed., Elsevier Science, Amsterdam, 2011.
- M. Bassan, P. Andrew, G. Kurskiev, E. Mukhin, T. Hatae, G. Vayakis, E. Yatsuka, M. Walsh, Thomson scattering diagnostic systems in ITER, in: 17th International Symposium on Laser-Aided Plasma Diagnostics, Sapporo, Hokkaido, Japan, 27 September-1 October, 2015.
- A.W. Desilva, The evolution of light scattering as a plasma diagnostic, Contrib. Plasma Phys. 40 (2000) 23-35. https://doi.org/10.1002/(SICI)1521-3986(200004)40:1/2<23::AID-CTPP23>3.0.CO;2-7
- D. Moseev, M. Salewski, M. Garcia-Mu-noz, B. Geiger, M. Nocente, Recent progress in fast-ion diagnostics for magnetically confined plasmas, Rev. Mod. Plasma Phys. 2 (2018) 7. https://doi.org/10.1007/s41614-018-0019-4
- A.T. Powis, M.N. Shneider, Particle-in-cell modeling of laser Thomson scattering in low-density plasmas at elevated laser intensities, Phys. Plasmas 25 (2018), 053513. https://doi.org/10.1063/1.5029820
- E.E. Salpeter, Electron density fluctuations in a plasma, Phys. Rev. 120 (1960) 1528-1535. https://doi.org/10.1103/PhysRev.120.1528
- M. Salewski, O. Asunta, L.-G. Eriksson, H. Bindslev, V. Hynonen, S.B. Korsholm, et al., Comparison of collective Thomson scattering signals due to fast ions in ITER scenarios with fusion and auxiliary heating, Plasma Phys. Control. Fusion 51 (2009), 035006. https://doi.org/10.1088/0741-3335/51/3/035006
- M. Salewski, L.-G. Eriksson, H. Bindslev, S.B. Korsholm, F. Leipold, F. Meo, P.K. Michelsen, S.K. Nielsen, Impact of ICRH on the measurement of fusion alphas by collective Thomson scattering in ITER, Nucl. Fusion 49 (2009), 025006. https://doi.org/10.1088/0029-5515/49/2/025006
-
T. Kondoh, T. Hayashi, Y. Kawano, Y. Kusama, T. Sugie, M. Hirata, Y. Miura, CO2 laser collective Thomson scattering diagnostic of
${\alpha}$ -particles in burning plasmas, Fusion Sci. Technol. 51 (2007) 62-64. https://doi.org/10.13182/FST07-A1314 - S.L. Prunty, A primer on the theory of Thomson scattering for hightemperature fusion plasmas, Phys. Scr. 89 (2014), 128001. https://doi.org/10.1088/0031-8949/89/12/128001
- J. Hawreliak, D. Chambers, S. Glenzer, R.S. Marjoribanks, M. Notley, P. Pinto, O. Renner, P. Sondhauss, R. Steel, S. Topping, E. Wolfrum, P. Young, J.S. Wark, A Thomson scattering post-processor for the MEDUSA hydrocode, J. Quant. Spectrosc. Radiat. Transf. 71 (2001) 383-395. https://doi.org/10.1016/S0022-4073(01)00084-X
- S. Sepke, Y.Y. Lau, J.P. Holloway, D. Umstadter, Thomson scattering and ponderomotive intermodulation within standing laser beat waves in plasma, Phys. Rev. E. 72 (2005), 026501. https://doi.org/10.1103/PhysRevE.72.026501
- N. Hafz, C.B. Kim, G.H. Kim, H. Suk, Thomson scattering of intense femtosecond laser from relativistic plasma-accelerated electron bunches, in: 3rd Asian Conference, APAC'04, Gyeongju, Korea, 2004. March 22-26.
- T. Chuan-Xiang, L. Ren-Kai, H. Wen-Hui, C. Huai-Bi, D. Ying-Chao, D. Qiang, D. Tai-Bin, H. Xiao-Zhong, H. Jian-Fei, L. Yu-Zhen, Q. Hou-Jun, S. Jia-Ru, X. Dao, Y. Li-Xin, Y. Pei-Cheng, A simulation study of Tsinghua Thomson scattering Xray source, Chin. Phys. C 33 (2009) 146-150. https://doi.org/10.1088/1674-1137/33/S2/038
- H.C. Wu, J. Meyer-ter-Vehn, B.M. Hegelich, J.C. Fernandez, Nonlinear coherent Thomson scattering from relativistic electron sheets as a means to produce isolated ultrabright attosecond x-ray pulses, Phys. Rev. Spec. Top. Ac. 14 (2011), 070702.
- D. Yun-Ze, D. Ying-Chao, Z. ZHen, H. Wen-Hui, Simulation study of a photoinjector for brightness improvement in Thomson scattering x-ray source via ballistic bunching, Chin. Phys. C 38 (2014), 027003. https://doi.org/10.1088/1674-1137/38/2/027003
- T. Fang, Z. Bin, H. Dan, X. Jian-Ting, Z. Zong-Qing, C. Lei-Feng, G. Yu-Qiu, Z. Bao-Han, Numerical simulation for all-optical Thomson scattering X-ray source, Chin. Phys. B 23 (2014), 034104. https://doi.org/10.1088/1674-1056/23/3/034104
- J.S. Ross, P. Datte, L. Divol, J. Galbraith, D.H. Froula, S.H. Glenzer, B. Hatch, J. Katz, J. Kilkenny, O. Landen, A.M. Manuel, W. Molander, D.S. Montgomery, J.D. Moody, G. Swadling, J. Weaver, Simulated performance of the optical Thomson scattering diagnostic designed for the National Ignition Facility, Rev. Sci. Instrum. 87 (2016) 11E510. https://doi.org/10.1063/1.4959568
- D.L. Bruhwiler, R.E. Giacone, J.R. Cary, J.P. Verboncoeur, P. Mardahl, E. Esarey, W.P. Leemans, B.A. Shadwick, Particle-in-cell simulations of plasma accelerators and electron-neutral collisions, Phys. Rev. Spec. Top. Ac. 4 (2001), 101302.
- V. Vahedi, J.P. Verboncoeur, XGrafix: an X-windows environment for realtime interactive simulations, in: 14th International Conference on Numerical Simulation of Plasmas, Annapolis, Maryland, 1991.
- E. Yatsuka, M. Bassan, T. Hatae, M. Ishikawa, T. Shimada, G. Vayakis, M. Walsh, R. Scannell, R. Huxford, P. Bilkova, P. Bohm, M. Aftanase, K. Itamia, Progresses in development of the ITER edge Thomson scattering system, in: 16th International Symposium on Laser-Aided Plasma Diagnostics, Madison, Wisconsin, U.S.A., 2013, 22-26 September.
- T.J. Dolan, Fusion Research Principles, Experiments and Technology, revised ed., Elsevier Science, 2013.
- N. Mitchell, A. Devred, P. Libeyre, B. Lim, Savary and the ITER magnet division, the ITER magnets: design and construction status, IEEE Trans. Appl. Supercond. 22 (2012) 4200809. https://doi.org/10.1109/TASC.2011.2174560
- T. Matoba, T. Itagaki, T. Yamauchi, A. Funahashi, Analytical approximations in the theory of relativistic Thomson scattering for high temperature fusion plasma, Jpn. J. Appl. Phys. 18 (1979) 1127-1133. https://doi.org/10.1143/JJAP.18.1127