DOI QR코드

DOI QR Code

Radiomorphometric analysis of edentulous posterior mandibular ridges in the first molar region: a cone-beam computed tomography study

  • Magat, Guldane (Department of Oral and Maxillofacial Radiology, Faculty of Dentistry, Necmettin Erbakan University)
  • Received : 2019.06.20
  • Accepted : 2019.09.09
  • Published : 2020.02.28

Abstract

Purpose: The aim of our study was to determine the prevalence and degree of lingual concavities in the first molar region of the mandible to reduce the risk of perforating the lingual cortical bone during dental implant insertion. Methods: A total of 163 suitable cross-sectional cone-beam computed tomography images of edentulous mandibular first molar regions were evaluated. The mandibular morphology was classified as a U-configuration (undercut), a P-configuration (parallel), or a C-configuration (convex), depending on the shape of the alveolar ridge. The characteristics of lingual concavities, including their depth, angle, vertical location, and additional parameters, were measured. Results: Lingual undercuts had a prevalence of 32.5% in the first molar region. The mean concavity angle was 63.34°±8.26°, and the mean linear concavity depth (LCD) was 3.03±0.99 mm. The mean vertical distances of point P from the alveolar crest (Vc) and from the inferior mandibular border were 9.39±3.39 and 16.25±2.44, respectively. Men displayed a larger vertical height from the alveolar crest to 2 mm coronal to the inferior alveolar nerve (Vcb) and a wider LCD than women (P<0.05). Negative correlations were found between age and buccolingual width at 2 mm apical to the alveolar crest, between age and Vcb, between age and Vc, and between age and LCD (P<0.05). Conclusions: The prevalence of lingual concavities was 32.5% in this study. Age and gender had statistically significant effects on the lingual morphology. The risk of lingual perforation was higher in young men than in the other groups analyzed.

Keywords

References

  1. Rajput BS, Merita S, Parihar AS, Vyas T, Kaur P, Chansoria S. Assessment of lingual concavities in submandibular fossa region in patients requiring dental implants-A cone beam computed tomography study. J Contemp Dent Pract 2018;19:1329-33. https://doi.org/10.5005/jp-journals-10024-2427
  2. Panjnoush M, Eil N, Kheirandish Y, Mofidi N, Shamshiri AR. Evaluation of the concavity depth and inclination in jaws using CBCT. Caspian J Dent Res 2016;5:17-23.
  3. Kalpidis CD, Konstantinidis AB. Critical hemorrhage in the floor of the mouth during implant placement in the first mandibular premolar position: a case report. Implant Dent 2005;14:117-24. https://doi.org/10.1097/01.id.0000165028.89434.99
  4. de Souza LA, Souza Picorelli Assis NM, Ribeiro RA, Pires Carvalho AC, Devito KL. Assessment of mandibular posterior regional landmarks using cone-beam computed tomography in dental implant surgery. Ann Anat 2016;205:53-9. https://doi.org/10.1016/j.aanat.2016.01.006
  5. Tyndall DA, Price JB, Tetradis S, Ganz SD, Hildebolt C, Scarfe WC, et al. Position statement of the American Academy of Oral and Maxillofacial Radiology on selection criteria for the use of radiology in dental implantology with emphasis on cone beam computed tomography. Oral Surg Oral Med Oral Pathol Oral Radiol 2012;113:817-26. https://doi.org/10.1016/j.oooo.2012.03.005
  6. Zohrabian VM, Sonick M, Hwang D, Abrahams JJ. Dental Implants. Semin Ultrasound CT MR 2015;36:415-26. https://doi.org/10.1053/j.sult.2015.09.002
  7. Aranyarachkul P, Caruso J, Gantes B, Schulz E, Riggs M, Dus I, et al. Bone density assessments of dental implant sites: 2. Quantitative cone-beam computerized tomography. Int J Oral Maxillofac Implants 2005;20:416-24.
  8. Naitoh M, Hirukawa A, Katsumata A, Ariji E. Evaluation of voxel values in mandibular cancellous bone: relationship between cone-beam computed tomography and multislice helical computed tomography. Clin Oral Implants Res 2009;20:503-6. https://doi.org/10.1111/j.1600-0501.2008.01672.x
  9. Sammartino G, Marenzi G, Citarella R, Ciccarelli R, Wang HL. Analysis of the occlusal stress transmitted to the inferior alveolar nerve by an osseointegrated threaded fixture. J Periodontol 2008;79:1735-44. https://doi.org/10.1902/jop.2008.080030
  10. Chiapasco M, Abati S, Romeo E, Vogel G. Clinical outcome of autogenous bone blocks or guided bone regeneration with e-PTFE membranes for the reconstruction of narrow edentulous ridges. Clin Oral Implants Res 1999;10:278-88. https://doi.org/10.1034/j.1600-0501.1999.100404.x
  11. Chan HL, Brooks SL, Fu JH, Yeh CY, Rudek I, Wang HL. Cross-sectional analysis of the mandibular lingual concavity using cone beam computed tomography. Clin Oral Implants Res 2011;22:201-6. https://doi.org/10.1111/j.1600-0501.2010.02018.x
  12. Leong DJ, Chan HL, Yeh CY, Takarakis N, Fu JH, Wang HL. Risk of lingual plate perforation during implant placement in the posterior mandible: a human cadaver study. Implant Dent 2011;20:360-3. https://doi.org/10.1097/ID.0b013e3182263555
  13. Dubois L, de Lange J, Baas E, Van Ingen J. Excessive bleeding in the floor of the mouth after endosseus implant placement: a report of two cases. Int J Oral Maxillofac Surg 2010;39:412-5. https://doi.org/10.1016/j.ijom.2009.07.062
  14. Loukas M, Kinsella CR Jr, Kapos T, Tubbs RS, Ramachandra S. Anatomical variation in arterial supply of the mandible with special regard to implant placement. Int J Oral Maxillofac Surg 2008;37:367-71. https://doi.org/10.1016/j.ijom.2007.11.007
  15. Tomljenovic B, Herrmann S, Filippi A, Kuhl S. Life-threatening hemorrhage associated with dental implant surgery: a review of the literature. Clin Oral Implants Res 2016;27:1079-84. https://doi.org/10.1111/clr.12685
  16. Flanagan D. Important arterial supply of the mandible, control of an arterial hemorrhage, and report of a hemorrhagic incident. J Oral Implantol 2003;29:165-73. https://doi.org/10.1563/1548-1336(2003)029<0165:IASOTM>2.3.CO;2
  17. Huang RY, Cochran DL, Cheng WC, Lin MH, Fan WH, Sung CE, et al. Risk of lingual plate perforation for virtual immediate implant placement in the posterior mandible: a computer simulation study. J Am Dent Assoc 2015;146:735-42. https://doi.org/10.1016/j.adaj.2015.04.027
  18. Froum S, Casanova L, Byrne S, Cho SC. Risk assessment before extraction for immediate implant placement in the posterior mandible: a computerized tomographic scan study. J Periodontol 2011;82:395-402. https://doi.org/10.1902/jop.2010.100360
  19. Herranz-Aparicio J, Marques J, Almendros-Marques N, Gay-Escoda C. Retrospective study of the bone morphology in the posterior mandibular region. Evaluation of the prevalence and the degree of lingual concavity and their possible complications. Med Oral Patol Oral Cir Bucal 2016;21:e731-6.
  20. Nickenig HJ, Wichmann M, Eitner S, Zoller JE, Kreppel M. Lingual concavities in the mandible: a morphological study using cross-sectional analysis determined by CBCT. J Craniomaxillofac Surg 2015;43:254-9. https://doi.org/10.1016/j.jcms.2014.11.018
  21. Kamburoglu K, Acar B, Yuksel S, Paksoy CS. CBCT quantitative evaluation of mandibular lingual concavities in dental implant patients. Surg Radiol Anat 2015;37:1209-15. https://doi.org/10.1007/s00276-015-1493-9
  22. Quirynen M, Mraiwa N, van Steenberghe D, Jacobs R. Morphology and dimensions of the mandibular jaw bone in the interforaminal region in patients requiring implants in the distal areas. Clin Oral Implants Res 2003;14:280-5. https://doi.org/10.1034/j.1600-0501.2003.140305.x
  23. Aranha Watanabe PC, Moreira Lopes De Faria L, Mardegan Issa JP, Caldeira Monteiro SA, Tiossi R. Morphodigital evaluation of the trabecular bone pattern in the mandible using digitized panoramic and periapical radiographs. Minerva Stomatol 2009;58:73-80.
  24. Ou CY, Chen CJ, Lin CP, Huang KC, Tseng CC. Morphologic analysis of mandibular lingual concavity by computed tomography image in Taiwan population. J Taiwan Periodontol 2012;17:191-7.
  25. Parnia F, Fard EM, Mahboub F, Hafezeqoran A, Gavgani FE. Tomographic volume evaluation of submandibular fossa in patients requiring dental implants. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2010;109:e32-6. https://doi.org/10.1016/j.tripleo.2009.08.035
  26. Braut V, Bornstein MM, Lauber R, Buser D. Bone dimensions in the posterior mandible: a retrospective radiographic study using cone beam computed tomography. Part 1--analysis of dentate sites. Int J Periodontics Restorative Dent 2012;32:175-84.
  27. Salemi F, Shokri A, Forouzandeh M, Karami M, Khalili Z. Mandibular lingual concavity: a cross-sectional analysis using cone beam computed tomography. J Clin Diagn Res 2018;12:ZC37-41.
  28. Borahan MO, Donmez FG, Ulay G, Sadikoglu AN, Pekiner FN. Assesment of submandibular fossa depth using cone beam computed tomography. Yeditepe J Dent 2018;14:51-6.
  29. Uchida Y, Goto M, Danjo A, Yamashita Y, Kuraoka A. Anatomic measurement of the depth and location of the sublingual fossa. Int J Oral Maxillofac Surg 2012;41:1571-6. https://doi.org/10.1016/j.ijom.2012.03.015

Cited by

  1. Design of customized soft‐tissue substitutes for posterior single‐tooth defects: A proof‐of‐concept in‐vitro study vol.32, pp.11, 2020, https://doi.org/10.1111/clr.13831