References
- Code of Federal Regulations, Aircraft Impact Assessment. 10 CFR 50, vol. 150, 2009.
- Department of Energy. Accident Analysis for Aircraft Crash into Hazardous Facilities. U.S. DOE-STD-3014-2006
- Nuclear Energy Institute. Methodology For Performing Aircraft Impact Assessments For New Plant Designs. U.S. NEI 07-13, ReVision 8, 2009
- Nuclear Regulatory Commission, Consideration of Aircraft Impacts For New Nuclear Power Reactors. U.S. RIN 3150-AI19, 2009.
- Nuclear Regulatory Commission, Guidance for the Assessment of Beyond-vDesign-Basis Aircraft Impacts, 2011.
- National Nuclear Safety Administration of China, Safety Regulations for Nuclear Power Plant Design: HAF, vol. 102-2016, 2016.
- International Atomic Energy Agency (IAEA), Safety Aspects of Nuclear Power Plants in Human Induced External Events: General Considerations, Safety Reports Series No. 86, IAEA, Vienna, 2017.
- International Atomic Energy Agency (IAEA), Safety Aspects of Nuclear Power Plants in Human Induced External Events: Assessment of Structures, Safety Reports Series No. 87, IAEA, Vienna, 2017.
- International Atomic Energy Agency (IAEA), Safety Aspects of Nuclear Power Plants in Human Induced External Events: Margin Assessment, Safety Reports Series No. 88, IAEA, Vienna, 2017.
- J.D. Riera, On the stress analysis of structures subjected to aircraft impact forces, Nucl. Eng. Des. 8 (4) (1968) 415-426. https://doi.org/10.1016/0029-5493(68)90039-3
- T. Sugano, H. Tsubota, Y. Kasai, N. Koshika, S. Orui, WA von Riesemann, D.C. Bickel, M.B. Parks, Full-scale aircraft impact test for evaluation of impact force, Nucl. Eng. Des. 140 (3) (1993) 373-385. https://doi.org/10.1016/0029-5493(93)90119-T
- Z.P. Duan, L.S. Zhang, L.J. Wen, C. Guo, Z.L. Bai, Z.C. Ou, F.L. Huang, Experimental research on impact loading characteristics by full-scale airplane impacting on concrete target, Nucl. Eng. Des. 328 (2018) 292-300. https://doi.org/10.1016/j.nucengdes.2018.01.021
- R. Lo Frano, G. Forasassi, Preliminary evaluation of aircraft impact on a near term nuclear power plant, Nucl. Eng. Des. 241 (12) (2011) 5245-5250. https://doi.org/10.1016/j.nucengdes.2011.08.079
- M.A. Iqbal, S. Rai, M.R. Sadique, P. Bhargava, Numerical simulation of aircraft crash on nuclear containment structure, Nucl. Eng. Des. 243 (2012) 321-335. https://doi.org/10.1016/j.nucengdes.2011.11.019
- M.R. Sadique, M.A. Iqbal, P. Bhargava, Nuclear containment structure subjected to commercial and fighter aircraft crash, Nucl. Eng. Des. 260 (2013) 30-46. https://doi.org/10.1016/j.nucengdes.2013.03.009
- A. Andonov, M. Kostov, A. Iliev, Capacity assessment of concrete containment vessels subjected to aircraft impact, Nucl. Eng. Des. 295 (2015) 767-781. https://doi.org/10.1016/j.nucengdes.2015.04.014
- T. Zhang, H. Wu, Q. Fang, T. Huang, Numerical simulations of nuclear power plant containment subjected to aircraft impact, Nucl. Eng. Des. 320 (2017) 207-221. https://doi.org/10.1016/j.nucengdes.2017.05.029
- X. Lu, K. Lin, S. Cen, Z. Xu, L. Lin, Comparing different fidelity models for the impact analysis of large commercial aircrafts on a containment building, Eng. Fail. Anal. 57 (2015) 254-269. https://doi.org/10.1016/j.engfailanal.2015.08.002
- M. Kostov, F.O. Henkel, A. Andonov, Safety assessment of A92 reactor building for large commercial aircraft crash, Nucl. Eng. Des. 269 (2014) 262-267. https://doi.org/10.1016/j.nucengdes.2013.08.038
- D.K. Thai, S.E. Kim, Safety assessment of a nuclear power plant building subjected to an aircraft crash, Nucl. Eng. Des. 293 (2015) 38-52. https://doi.org/10.1016/j.nucengdes.2015.07.053
- D.K. Thai, S.E. Kim, H.K. Lee, Effects of reinforcement ratio and arrangement on the structural behavior of a nuclear building under aircraft impact, Nucl. Eng. Des. 276 (2014) 228-240. https://doi.org/10.1016/j.nucengdes.2014.04.013
- K. Lee, S.E. Han, J.W. Hong, Analysis of impact of large commercial aircraft on a prestressed containment building, Nucl. Eng. Des. 265 (2013) 431-449. https://doi.org/10.1016/j.nucengdes.2013.09.009
- H. Abbas, D.K. Paul, P.N. Godbole, G.C. Nayak, Reaction-time response of aircraft crash, Comput. Struct. 55 (5) (1995) 809-817. https://doi.org/10.1016/0045-7949(94)E0270-C
- H. Abbas, D.K. Paul, P.N. Godbole, G.C. Nayak, Aircraft crash upon outer containment of nuclear power plant, Nucl. Eng. Des. 160 (1-2) (1996) 13-50. https://doi.org/10.1016/0029-5493(95)01049-1
- A. Siefert, F.O. Henkel, Nonlinear analysis of commercial aircraft impact on a reactor building -Comparison between integral and decoupled crash simulation, Nucl. Eng. Des. 269 (2014) 130-135. https://doi.org/10.1016/j.nucengdes.2013.08.018
- J. Arros, N. Doumbalski, Analysis of aircraft impact to concrete structures, Nucl. Eng. Des. 237 (12) (2007) 1241-1249. https://doi.org/10.1016/j.nucengdes.2006.09.044
- M. Kukreja, Damage evaluation of 500 MWe Indian Pressurized Heavy Water Reactor nuclear containment for aircraft impact, Nucl. Eng. Des. 235 (17) (2003) 1807-1817. https://doi.org/10.1016/j.nucengdes.2005.05.015
- K. Lee, J.W. Jung, J.W. Hong, Advanced aircraft analysis of an F-4 Phantom on a reinforced concrete building, Nucl. Eng. Des. 273 (2014) 505-528. https://doi.org/10.1016/j.nucengdes.2014.02.032
- LSTC, LS-DYNA Keyword User's Manual, Version 971, 2007.
- https://b2b.hc360.com/viewPics/supplyself_pics/483587759.html.
- https://news.xinhuanet.com.
- http://www.vx.com/detail/533.
- https://www.aerospace-technology.com/projects/airbus_a380.
- G.R. Johnson, W.H. Cook, A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures, Eng. Fract. Mech. 21 (1983) 541-548.
- Altair HyperWorks, HyperMesh, Version 11.0, 2010.
- OECD/NEA, CSNI, Specialist Meeting on External Hazards, 2002.
- J. Mizuno, N. Koshika, Y. Sawamoto, N. Niwa, T. Yamashita, A. Suzuki, Investigation on Impact Resistance of Steel Plate Reinforced Concrete Barriers Against Aircraft Impact Part 1: Test Program and Results. in: Transactions of the 18th Smirt Conference, Beijing, 2005, pp. 2566-2579. J05-1.
- J. Mizuno, H. Morikawa, N. Koshika, K. Wakimoto, K. Kobayashi, R. Fukuda, Investigation On Impact Resistance Of Steel Plate Reinforced Concrete Barriers Against Aircraft Impact Part 2: Simulation Analyses Of Scale Model Impact Tests. In: Transactions of the 18th SMiRT Conference, Beijing, 2005, pp. 2566-2579. J05-1.
- https://www.cnec5.com/news/detail.aspx?id=3085.
- L.J. Malvar, J.E. Crawford, J.W. Wesevich, et al., A plasticity concrete material model for DYNA3D, Int. J. Impact Eng. 19 (9-10) (1997) 847-873. https://doi.org/10.1016/S0734-743X(97)00023-7
- L. Schwer, An Introduction to the Winfrith Concrete Model, Schwer Engineering & Consulting Services, 2010.
- L.E. Schwer, Y.D. Murray, A three invariant smooth cap model with mixed hardening, Int. J. Numer. Anal. Methods Geomech. 18 (10) (1994) 657-688. https://doi.org/10.1002/nag.1610181002
Cited by
- Impact test of a centrifugal pump used in nuclear power plant under aircraft crash scenario vol.53, pp.6, 2020, https://doi.org/10.1016/j.net.2020.12.016
- Numerical investigation on postulated aircraft crash to tokamak building vol.173, 2021, https://doi.org/10.1016/j.fusengdes.2021.112958