DOI QR코드

DOI QR Code

Radioactivity data analysis of 137Cs in marine sediments near severely damaged Chernobyl and Fukushima nuclear power plants

  • Song, Ji Hyoun (Nuclear Chemistry Research Division, Korea Atomic Energy Research Institute) ;
  • Kim, TaeJun (Nuclear Chemistry Research Division, Korea Atomic Energy Research Institute) ;
  • Yeon, Jei-Won (Nuclear Chemistry Research Division, Korea Atomic Energy Research Institute)
  • Received : 2018.11.20
  • Accepted : 2019.07.15
  • Published : 2020.02.25

Abstract

Using several accessible published data sets, we analyzed the temporal change of 137Cs radioactivity (per unit mass of sample) in marine sediments and investigated the effect of the water content of sediment on the 137Cs radioactivity, to understand the behavior of 137Cs present in marine environments. The 137Cs radioactivity in sediments decreased more slowly in the Baltic Sea (near the Chernobyl nuclear power plant) than in the ocean near the Fukushima Daiichi nuclear power plant (FDNPP). The 137Cs radioactivity in the sediment near the FDNPP tended to increase as the water content increased, and the water content decreased at certain sampling sites near the FDNPP for several years. Additionally, the decrease in the water content contributed to 51.2% of the average 137Cs radioactivity decrease rate for the same period. Thus, it may be necessary to monitor both the 137Cs radioactivity and the water content for marine sediments to track the 137Cs that was discharged from the sites of Chernobyl and Fukushima nuclear power plants where severe accidents occurred.

Keywords

References

  1. T. Zalewska, M. Suplinska, Anthropogenic radionuclides $^{137}Cs$ and $^{90}Sr$ in the southern Baltic Sea ecosystem, Oceanologia 55 (2013) 485-517, https://doi.org/10.5697/oc.55-3.485.
  2. TEPCO, Readings of Radioactivity Monitoring Results Near the Fukushima Daiichi Nuclear Power Plant Site, 2011-2016, http://www.tepco.co.jp/decommision/planaction/monitoring2/index-j.html.
  3. K. Nakata, H. Sugisaki, Impacts of the Fukushima Nuclear Accident on Fish and Fishing Grounds, 2013, https://doi.org/10.1007/978-4-431-55537-7.
  4. Y. Tateda, D. Tsumune, T. Tsubono, Simulation of radioactive cesium transfer in the southern Fukushima coastal biota using a dynamic food chain transfer model, J. Environ. Radioact. 124 (2013) 1-12, https://doi.org/10.1016/j.jenvrad.2013.03.007.
  5. K. Yamamoto, K. Tagami, S. Uchida, N. Ishii, Model Estimation of $^{137}Cs$ Concentration Change with Time in Seawater and Sediment Around the Fukushima Daiichi Nuclear Power Plant Site Considering Fast and Slow Reactions in the Seawater-Sediment Systems, 2015, pp. 867-881, https://doi.org/10.1007/s10967-014-3897-0.
  6. E.E. Black, K.O. Buesseler, W. Hole, W. Hole, Spatial Variability and the Fate of Cesium in Coastal Sediments Near Fukushima, Japan, 2011, 2014, pp. 5123-5137, https://doi.org/10.5194/bg-11-5123-2014.
  7. Y. Tateda, D. Tsumune, T. Tsubono, Simulation of radioactive cesium transfer in the southern Fukushima coastal biota using a dynamic food chain transfer model, J. Environ. Radioact. 124 (2013) 1-12, https://doi.org/10.1016/j.jenvrad.2013.03.007.
  8. C. Wang, Z. Baumann, D.J. Madigan, N.S. Fisher, Contaminated Marine Sediments as a Source of Cesium Radioisotopes for Benthic Fauna Near Fukushima, 2016, https://doi.org/10.1021/ACS.EST.6B02984.
  9. S. Otosaka, T. Kobayashi, Sedimentation and Remobilization of Radiocesium in the Coastal Area of Ibaraki, 70 Km South of the Fukushima Dai-Ichi Nuclear Power Plant, 2013, pp. 5419-5433, https://doi.org/10.1007/s10661-012-2956-7.
  10. K. Buesseler, M. Dai, M. Aoyama, C. Benitez-Nelson, S. Charmasson, K. Higley, V. Maderich, P. Masque, D. Oughton, J.N. Smith, Fukushima daiichiederived radionuclides in the ocean: transport, fate, and impacts, Ann. Rev. Mar. Sci. 9 (2017), https://doi.org/10.1146/annurev-marine-010816-060733annurevmarine-010816-060733.
  11. NRA Japan, Nuclear Regulation Authority Readings of Sea Area Monitoring, 2012-2014. http://radioactivity.nsr.go.jp/en/list/309/list-1.html.
  12. TEPCO, Readings of Sea Area Monitoring in Marine Soil, 2011-2016, http://radioactivity.nsr.go.jp/en/list/247/list-1.html.
  13. D. Ambe, H. Kaeriyama, Y. Shigenobu, K. Fujimoto, T. Ono, H. Sawada, et al., Five-minute resolved spatial distribution of radiocesium in marine sediment derived from the Fukushima Dai-ichi Nuclear Power Plant, J. Environ. Radioact. 138 (2014) 264-275, https://doi.org/10.1016/j.jenvrad.2014.09.007.
  14. M. Nakano, P.P. Povinec, E. Agency, Long-term simulations of the in the world ocean Cs dispersion from the Fukushima accident, J. Environ. Radioact. 111 (2012) 109-115, https://doi.org/10.1016/j.jenvrad.2011.12.001.
  15. S.P. Nielsen, P. Bengtson, R. Bojanowsky, P. Hagel, J. Herrmann, E. Ilus, E. Jakobson, S. Motiejunas, Y. Panteleev, A. Skujina, M. Suplinska, The radiological exposure of man from radioactivity in the Baltic Sea, Sci. Total Environ. 237/238 (1999) 133-141.
  16. R. Bezhenar, K. Tae Jung, V. Maderich, S. Willemsen, G. De With, F. Qiao, Transfer of radiocaesium from contaminated bottom sediments to marine organisms through benthic food chains in post-Fukushima and post-Chernobyl periods, Biogeosciences 13 (2016) 3021-3034, https://doi.org/10.5194/bg-13-3021-2016.
  17. IAEA, Global Marine Radioactivity Database (GLOMARD), 2000, pp. 1-60. IAEA-TECDOC 1146.
  18. IAEA, Marine Information System (MARiS). https://maris.iaea.org/.
  19. M. Aoyama, M. Kajino, T.Y. Tanaka, et al., $^{134}Cs$ and $^{137}Cs$ in the north pacific ocean derived from the TEPCO Fukushima dai-ichi nuclear power plant accident, Japan in march 2011: part two - estimation of $^{134}Cs$ and $^{137}Cs$ inventories in the north pacific ocean, J. Oceanogr. 72 (2015a) 67-76, https://doi.org/10.1007/s10872-015-0332-2.
  20. K.O. Buesseler, Fishing for Answers off Fukushima, 2012, p. 480, https://doi.org/10.1126/science.1228250.
  21. L. Charles, D. Alison, S. Joseph, Report on the Fukushima Dai-Ichi Nuclear Disaster and Radioactivity along the California Coast, 2014.
  22. A.S. Mollah, S.M. Ullah, Determination of distribution coefficient of $^{137}Cs$ and $^{90}Sr$ in soil from AERE, Savar, Waste Manag. 18 (1998) 287-291, https://doi.org/10.1016/S0956-053X(98)00031-2.
  23. A.L. Rudjord, D. Oughton, T.D. Bergan, G. Christensen, Radionuclides in Marine Sediments - Distribution and Processes, 1992, pp. 81-106.
  24. Ch Ganzha, D. Gudkov, D. Ganzha, V. Klenus, A. Nazarov, Physicochemical forms of $^{90}Sr$ and $^{137}Cs$ in components of Glyboke Lake ecosystem in the Chernobyl exclusion zone, J. Environ. Radioact. 127 (2014) 176-181. https://doi.org/10.1016/j.jenvrad.2013.03.013
  25. L. Jukka, H. Xiaolin, Chemistry and Analysis of Radionuclides: Laboratory Techniques and Methodology, Wiley-VCH, 2011.
  26. T. Ikenoue, H. Takata, M. Kusakabe, N. Kudo, K. Hasegawa, T. Ishimaru, Temporal variation of cesium isotope concentrations and atom ratios in zooplankton in the Pacific off the east coast of Japan, Sci. Rep. 7 (2017), https://doi.org/10.1038/srep39874.
  27. S. Topcuoglu, N. Gungor, C. Kirbasoglu, Distribution coefficients (K-d) and desorption rates of Cs-137 and Am-241 in Black Marine sediments, Chemosphere 49 (2002) 1367-1373. https://doi.org/10.1016/S0045-6535(02)00290-4
  28. P.P. Povinec, A. Aarkrog, K.O. Buesseler, R. Delfanti, K. Hirose, G.H. Hong, T. Ito, H.D. Livingston, H. Nies, V.E. Noshkin, S. Shima, O. Togawa, $^{90}Sr$, $^{137}Cs$ and $^{239,240}Pu$ concentration surface water time series in the Pacific and Indian Oceans - WOMARS results, J. Environ. Radioact. 81 (2005) 63-87, https://doi.org/10.1016/j.jenvrad.2004.12.003.
  29. Helsinki Commission, Climate change in the Baltic Sea area, Baltic Sea Environ. Proc 111 (2007) 1-47.
  30. NAVIONICS. https://webapp.navionics.com/#boating@4&key=_enuF%7BvyaW.
  31. M. Koster, Characterization of carbon and microbial biomass pools in shallow water coastal sediments of the southern Baltic Sea, Nordrugensche Bodden) 214 (2001) 25-41. https://doi.org/10.3354/meps214025
  32. F.K. Pappa, C. Tsabaris, A. Ioannidou, D.L. Patiris, H. Kaberi, I. Pashalidis, Radioactivity and metal concentrations in marine sediments associated with mining activities in Ierissos Gulf, North Aegean Sea, Greece, Appl. Radiat. Isot. 116 (2016) 22-33, https://doi.org/10.1016/j.apradiso.2016.07.006.
  33. United States, Environmental Protection Agency, Chesapeake Bay Program Technical Studies: A Synthesis, 1982.
  34. Y. Miyazawa, M.S. Tec, S. Varlamov, M.S. Tec, T. Miyama, M.S. Tec, Transport Simulation of the Radionuclide from the Shelf to Open Ocean Around Fukushima, 2012, https://doi.org/10.1016/j.csr.2012.09.002.

Cited by

  1. Measurements of the Specific Activities of 137Cs in Antarctica Environmental Samples by Using the Low-Level Radiation Analysis Method vol.77, pp.3, 2020, https://doi.org/10.3938/jkps.77.217