DOI QR코드

DOI QR Code

Dislocation-oxide interaction in Y2O3 embedded Fe: A molecular dynamics simulation study

  • Azeem, M. Mustafa (College of Nuclear Science and Technology, Fundamental Science on Nuclear Safety and Simulation Technology Laboratory, Harbin Engineering University) ;
  • Wang, Qingyu (College of Nuclear Science and Technology, Fundamental Science on Nuclear Safety and Simulation Technology Laboratory, Harbin Engineering University) ;
  • Li, Zhongyu (College of Nuclear Science and Technology, Fundamental Science on Nuclear Safety and Simulation Technology Laboratory, Harbin Engineering University) ;
  • Zhang, Yue (Nuclear and Radiation Safety Center, MEE)
  • Received : 2019.01.21
  • Accepted : 2019.07.09
  • Published : 2020.02.25

Abstract

Oxide dispersed strengthened (ODS) steel is an important candidate for Gen-IV reactors. Oxide embedded in Fe can help to trap irradiation defects and enhances the strength of steel. It was observed in this study that the size of oxide has a profound impact on the depinning mechanism. For smaller sizes, the oxide acts as a void; thus, letting the dislocation bypass without any shear. On the other hand, oxides larger than 2 nm generate new dislocation segments around themselves. The depinning is similar to that of Orowan mechanism and the strengthening effect is likely to be greater for larger oxides. It was found that higher shear deformation rates produce more fine-tuned stress-strain curve. Both molecular dynamics (MD) simulations and BKS (Bacon-Knocks-Scattergood) model display similar characteristics whereby establishing an inverse relation between the depinning stress and the obstacle distance. It was found that (110)oxide || (111)Fe (oriented oxide) also had similar characteristics as that of (100)oxide || (111)Fe but resulted in an increased depinning stress thereby providing greater resistance to dislocation bypass. Our simulation results concluded that critical depinning stress depends significantly on the size and orientation of the oxide.

Keywords

References

  1. J.P. Wharry, M.J. Swenson, K.H. Yano, A review of the irradiation evolution of dispersed oxide nanoparticles in the b.c.c. Fe-Cr system: current understanding and future directions, J. Nucl. Mater. 486 (2017) 11-20, https://doi.org/10.1016/j.jnucmat.2017.01.009.
  2. S. Ukai, M. Fujiwara, Perspective of ODS alloys application in nuclear environments, J. Nucl. Mater. 307-311 (2002) 749-757, https://doi.org/10.1016/S0022-3115(02)01043-7.
  3. S.J. Zinkle, G.S. Was, Materials challenges in nuclear energy, Acta Mater. 61 (2013) 735-758, https://doi.org/10.1016/j.actamat.2012.11.004.
  4. L. Yang, Y. Jiang, G.R. Odette, W. Zhou, Z. Liu, Y. Liu, Nonstoichiometry and relative stabilities of Y2Ti2O7polar surfaces: a density functional theory prediction, Acta Mater. 61 (2013) 7260-7270, https://doi.org/10.1016/j.actamat.2013.08.031.
  5. M. Dholakia, S. Chandra, S.M. Jaya, A comparative study of topology and local disorder in Y2O3, Y2TiO5, and Y2Ti2O7 crystals Manan, J. Alloy. Comp. 739 (2018) 1037-1047, https://doi.org/10.1016/j.jallcom.2017.12.244.
  6. Y.N. Osetsky, D.J. Bacon, An atomic-level model for studying the dynamics of edge dislocations in metals, Model. Simul. Mater. Sci. Eng. 11 (2003) 427-446, https://doi.org/10.1088/0965-0393/11/4/302.
  7. D.A. Terentyev, G. Bonny, L. Malerba, Strengthening due to coherent Cr precipitates in Fe-Cr alloys: atomistic simulations and theoretical models, Acta Mater. 56 (2008) 3229-3235, https://doi.org/10.1016/j.actamat.2008.03.004.
  8. L.K. Mansur, A.F. Rowcliffe, R.K. Nanstad, S.J. Zinkle, W.R. Corwin, R.E. Stoller, Materials needs for fusion, Generation IV fission reactors and spallation neutron sources - similarities and differences, J. Nucl. Mater. (2004) 329-333, https://doi.org/10.1016/j.jnucmat.2004.04.016, 166-172.
  9. K.L. Murty, I. Charit, Structural materials for Gen-IV nuclear reactors: challenges and opportunities, J. Nucl. Mater. 383 (2008) 189-195, https://doi.org/10.1016/j.jnucmat.2008.08.044.
  10. A. Lehtinen, L. Laurson, F. Granberg, K. Nordlund, M.J. Alava, Effects of precipitates and dislocation loops on the yield stress of irradiated iron, Sci. Rep. 8 (2018) 1-12, https://doi.org/10.1038/s41598-018-25285-z.
  11. S. Kodambaka, S.V. Khare, W. Swlech, K. Ohmori, I. Petrov, J.E. Greene, Dislocation-driven surface dynamics on solids, Nature 429 (2004) 49-52, https://doi.org/10.1038/nature02495.
  12. Y. Ijiri, N. Oono, S. Ukai, H. Yu, S. Ohtsuka, Y. Abe, Y. Matsukawa, Consideration of the oxide particleedislocation interaction in 9Cr-ODS steel, Philos. Mag. A 97 (2017), https://doi.org/10.1080/14786435.2017.1288942.
  13. D.J. Srolovitz, R.A. Petkovic-luton, M.J. Litton, Diffusional relaxation of the dislocation-inclusion repulsion, Philos. Mag. A Phys. Condens. Matter, Struct. Defects Mech. Prop. 48 (1983) 795-809, https://doi.org/10.1080/01418618308236545.
  14. D. Terentyev, G. Bonny, C. Domain, G. Monnet, L. Malerba, Mechanisms of radiation strengthening in Fe-Cr alloys as revealed by atomistic studies, J. Nucl. Mater. 442 (2013) 470-485, https://doi.org/10.1016/j.jnucmat.2013.03.054.
  15. Z. Zhang, C.T. Liu, M.K. Miller, X.L. Wang, Y. Wen, T. Fujita, A. Hirata, M. Chen, G. Chen, B.A. Chin, A nanoscale co-precipitation approach for property enhancement of Fe-base alloys, Sci. Rep. 3 (2013) 1-6, https://doi.org/10.1038/srep01327.
  16. D. Hull, D.J. Bacon, Indroduction to Dislocations, fifth ed., Butterworth-Heinemann, 2011.
  17. D. Terentyev, P. Grammatikopoulos, D.J. Bacon, Y.N. Osetsky, Simulation of the interaction between an edge dislocation and a < 1 0 0> interstitial dislocation loop in Alpha-iron, Acta Mater. 56 (2008) 5034-5046, https://doi.org/10.1016/j.actamat.2008.06.032.
  18. A. Lehtinen, F. Granberg, L. Laurson, K. Nordlund, M.J. Alava, Multiscale modeling of dislocation-precipitate interactions in Fe: from molecular dynamics to discrete dislocations, Phys. Rev. E. 93 (2016) 1-9, https://doi.org/10.1103/PhysRevE.93.013309.
  19. A. Keyhani, R. Roumina, Dislocation-precipitate interaction map, Comput. Mater. Sci. 141 (2018) 153-161, https://doi.org/10.1016/j.commatsci.2017.09.036.
  20. A. Takahashi, N.M. Ghoniem, A computational method for dislocationprecipitate interaction, J. Mech. Phys. Solids 56 (2008) 1534-1553, https://doi.org/10.1016/j.jmps.2007.08.002.
  21. S. Kondo, T. Mitsuma, N. Shibata, Y. Ikuhara, Direct observation of individual dislocation interaction processes with grain boundaries, Sci. Adv. 2 (2016) 1-8, https://doi.org/10.1126/sciadv.1501926.
  22. I. Ringdalen, S. Materials, N. Trondheim, Dislocation dynamics study of precipitate hardening in Al-Mg-Si alloys with input from experimental characterization, MRS Commun. (2017) 1-8, https://doi.org/10.1557/mrc.2017.78.
  23. A.V. Bakaev, D.A. Terentyev, P.Y. Grigorev, E.E. Zhurkin, Atomistic simulation of the interaction between mobile edge dislocations and radiation-induced defects in Fe-Ni-Cr austenitic alloys, J. Surf. Investig. X-Ray, Synchrotron Neutron Tech. 8 (2014), https://doi.org/10.1134/S1027451014020062.
  24. Y. Long, N.X. Chen, Atomistic Simulation of Misfit Dislocation in Metal/Oxide Interfaces 42, 2008, pp. 426-433, https://doi.org/10.1016/j.commatsci.2007.08.007.
  25. F. Granberg, Interaction Mechanisms of Edge Dislocations with Obstacles in Fe and Metal Alloys, 2016.
  26. D. Terentyev, G. Bonny, C. Domain, G. Monnet, L. Malerba, Mechanisms of radiation strengthening in Fe-Cr alloys as revealed by atomistic studies, J. Nucl. Mater. 442 (2013) 470-485, https://doi.org/10.1016/j.jnucmat.2013.03.054.
  27. Y.N. Osetsky, D.J. Bacon, V. Mohles, Atomic modelling of strengthening mechanisms due to voids and copper precipitates in ${\alpha}$-iron, Philos. Mag. A 83 (2003) 3623-3641, https://doi.org/10.1080/14786430310001603364.
  28. Y.N. Osetsky, A.G. Mikhin, A. Serra, Computer simulation study of copper precipitates in a-iron, J. Nucl. Mater. 212-215 (1994) 236-240, https://doi.org/10.1016/0022-3115(94)90063-9.
  29. C.S. Becquart, C. Domain, Modeling microstructure and irradiation effects, Metall. Mater. Trans. A 42 (2011) 852-870, https://doi.org/10.1007/s11661-010-0460-7.
  30. A. Simar, H.J.L. Voigt, B.D. Wirth, Molecular dynamics simulations of dislocation interaction with voids in nickel, Comput. Mater. Sci. 50 (2011) 1811-1817, https://doi.org/10.1016/j.commatsci.2011.01.020.
  31. J. Li, B. Liu, Q.H. Fang, Z.W. Huang, Y.W. Liu, Atomic-scale strengthening mechanism of dislocation-obstacle interaction in silicon carbide particlereinforced copper matrix nanocomposites, Ceram. Int. 43 (2017) 3839-3846, https://doi.org/10.1016/j.ceramint.2016.12.040.
  32. J. Deres, L. Proville, M.C. Marinica, Dislocation depinning from nano-sized irradiation defects in a bcc iron model, Acta Mater. 99 (2015) 99-105, https://doi.org/10.1016/j.actamat.2015.07.067.
  33. L. Proville, B. Bako, Dislocation depinning from ordered nanophases in a model fcc crystal: from cutting mechanism to Orowan looping, Acta Mater. 58 (2010) 5565-5571, https://doi.org/10.1016/j.actamat.2010.06.018.
  34. Y. Xiang, D.J. Srolovitz, L.-T. Cheng, E. Weinan, Level set simulations of dislocation-particle bypass mechanisms, Acta Mater. 52 (2004) 1745-1760. https://doi.org/10.1016/j.actamat.2003.12.016.
  35. C.V. Singh, D.H. Warner, Mechanisms of Guinier-Preston zone hardening in the athermal limit, Acta Mater. (2010), https://doi.org/10.1016/j.actamat.2010.06.055.
  36. F. Granberg, D. Terentyev, K. Nordlund, Interaction of dislocations with carbides in BCC Fe studied by molecular dynamics, J. Nucl. Mater. 460 (2015) 23-29, https://doi.org/10.1016/j.jnucmat.2015.01.064.
  37. F. Granberg, D. Terentyev, K. Nordlund, Interaction of dislocations with carbides in BCC Fe studied by molecular dynamics, Fusion Sci. Technol. 66 (2014) 23-29, https://doi.org/10.1016/j.jnucmat.2015.01.064.
  38. X.H. Long, D. Wang, W. Setyawan, P. Liu, N. Gao, R.J. Kurtz, Z.G. Wang, X.L. Wang, Atomistic simulation of interstitial dislocation loop evolution under applied stresses in BCC iron, Phys. Status Solidi Appl. Mater. Sci. 215 (2018) 1-5, https://doi.org/10.1002/pssa.201700494.
  39. X. Zhang, H. Deng, S. Xiao, X. Li, W. Hu, Atomistic simulations of solid solution strengthening in Ni-based superalloy, Comput. Mater. Sci. 68 (2013) 132-137, https://doi.org/10.1016/j.commatsci.2012.10.002.
  40. X. Zhang, G. Lu, How Cr changes the dislocation core structure of ${\alpha}$-Fe: the role of magnetism, J. Phys. Condens. Matter 25 (2013), https://doi.org/10.1088/0953-8984/25/8/085403.
  41. K. Yasunaga, M. Iseki, M. Kiritani, Dislocation structures introduced by highspeed deformation in bcc metals, Mater. Sci. Eng. A 350 (2003) 76-80, https://doi.org/10.1016/S0921-5093(02)00697-4.
  42. Z. Huang, J.E. Allison, A. Misra, Interaction of glide dislocations with extended precipitates in Mg-Nd alloys, Sci. Rep. 8 (2018) 1-12, https://doi.org/10.1038/s41598-018-20629-1.
  43. D. Terentyev, D.J. Bacon, Y.N. Osetsky, Interaction of an edge dislocation with voids in ${\alpha}$-iron modelled with different interatomic potentials, J. Phys. Condens. Matter 20 (2008), https://doi.org/10.1088/0953-8984/20/44/445007.
  44. D. Terentyev, P. Grammatikopoulos, D.J. Bacon, Y.N. Osetsky, Simulation of the interaction between an edge dislocation and a 〈1 0 0〉 interstitial dislocation loop in ${\alpha}$-iron, Acta Mater. 56 (2008) 5034-5046, https://doi.org/10.1016/j.actamat.2008.06.032.
  45. C.S. Shin, M.C. Fivel, M. Verdier, K.H. Oh, Dislocation-impenetrable precipitate interaction: a three-dimensional discrete dislocation dynamics analysis, Philos. Mag. A 83 (2003) 3691-3704, https://doi.org/10.1080/14786430310001599379.
  46. M.V. Rodriguez, P.J. Ficalora, The Mechanism of a Hydrogen - Dislocation Interaction in B. C.C. Metals : embrittlement and Dislocation Motion 85, 1987, pp. 43-52. https://doi.org/10.1016/0025-5416(87)90465-4
  47. F. Granberg, Interaction Mechanisms of Edge Dislocations with Obstacles in Fe and Metal Alloys, 2016.
  48. M. Popova, Y.L. Shen, T.A. Khraishi, Atomistic simulation of dislocation interactions in a model crystal subjected to shear, Mol. Simul. 31 (2005) 1043-1049, https://doi.org/10.1080/08927020500349999.
  49. G. Bonny, A. Bakaev, D. Terentyev, E. Zhurkin, M. Posselt, Atomistic study of the hardening of ferritic iron by Ni-Cr decorated dislocation loops, J. Nucl. Mater. 498 (2018) 430-437, https://doi.org/10.1016/j.jnucmat.2017.11.016.
  50. T. Hatano, H. Matsui, Molecular dynamics investigation of dislocation pinning by a nanovoid in copper, Phys. Rev. B Condens. Matter 72 (2005) 1-8, https://doi.org/10.1103/PhysRevB.72.094105.
  51. G. Monnet, Multiscale modeling of precipitation hardening: application to the Fe-Cr alloys, Acta Mater. 95 (2015) 302-311, https://doi.org/10.1016/j.actamat.2015.05.043.
  52. J. Xu, C. Wang, W. Zhang, C. Ren, H. Gong, P. Huai, Atomistic simulations of the interactions of helium with dislocations in nickel, Nucl. Mater. Energy 7 (2016) 12-19, https://doi.org/10.1016/j.nme.2016.02.007.
  53. E. Martinez, D. Schwen, A. Caro, Helium segregation to screw and edge dislocations in ${\alpha}$-iron and their yield strength, Acta Mater. 84 (2015) 208-214, https://doi.org/10.1016/j.actamat.2014.10.066.
  54. S. Plimpton, Fast parallel algorithms for short - range molecular dynamics, J. Comput. Phys. 117 (1995) 1-19, https://doi.org/10.1006/jcph.1995.1039.
  55. M. Dholakia, S. Chandra, M.C. Valsakumar, S. Mathi Jaya, Atomistic simulations of displacement cascades in Y2O3 single crystal, J. Nucl. Mater. 454 (2014) 96-104, https://doi.org/10.1016/j.jnucmat.2014.07.044.
  56. F. Hanic, M. Hartmanova, G.G. Knab, A.A. Urusovskaya, K.S. Bagdasarov, Real structure of undoped Y2O3 single crystals, Acta Crystallogr. B 40 (1984) 76-82, https://doi.org/10.1107/s0108768184001774.
  57. A.B. Belonoshko, G. Gutierrez, R. Ahuja, B. Johansson, Molecular dynamics simulation of the structure of yttria $Y_2O_3$ phases using pairwise interactions, Phys. Rev. B Condens. Matter 64 (2001), https://doi.org/10.1103/PhysRevB.64.184103.
  58. M. Dholakia, S. Chandra, S.M. Jaya, Properties of Y2TiO5 and Y2Ti2O7 crystals: development of novel interatomic potentials, J. Alloy. Comp. 739 (2018) 1037-1047, https://doi.org/10.1016/j.jallcom.2017.12.244.
  59. M. Dholakia, S. Chandra, S.M. Jaya, Molecular dynamics studies of displacement cascades in Fe-Y 2 TiO 5 system, in: AIP Conf. Proc., 2016, pp. 1-4, https://doi.org/10.1063/1.4948212.
  60. M.P. Higgins, C.Y. Lu, Z. Lu, L. Shao, L.M. Wang, F. Gao, Crossover from disordered to core-shell structures of nano-oxide Y2O3 dispersed particles in Fe, Appl. Phys. Lett. 109 (2016), https://doi.org/10.1063/1.4959776, 031911.
  61. D.J. Bacon, Y.N. Osetsky, D. Rodney, Dislocation-obstacle interactions at the atomic level, in: Dislocations in Solids, 2009, pp. 1-90, https://doi.org/10.1016/S1572-4859(09)01501-0.
  62. S. Queyreau, J. Marian, M.R. Gilbert, B.D. Wirth, Edge dislocation mobilities in bcc Fe obtained by molecular dynamics, Phys. Rev. B Condens. Matter (2011), https://doi.org/10.1103/PhysRevB.84.064106.
  63. M. Klimiankou, R. Lindau, A. Moslang, HRTEM study of yttrium oxide particles in ODS steels for fusion reactor application, J. Cryst. Growth 249 (2003) 381-387. http://doi.org/10.1016/S0022-0248(02)02134-6.
  64. A. Stukowski, Visualization and analysis of atomistic simulation data with OVITO the open visualization tool, Model. Simul. Mater. Sci. Eng. 18 (2010), https://doi.org/10.1088/0965-0393/18/1/015012, 015012.
  65. T. Lazauskas, S.D. Kenny, R. Smith, G. Nagra, M. Dholakia, M.C. Valsakumar, Simulating radiation damage in a bcc Fe system with embedded yttria nanoparticles, J. Nucl. Mater. 437 (2013) 317-325, https://doi.org/10.1016/j.jnucmat.2013.02.016.
  66. Y. Sun, W. Lai, Molecular dynamics simulations of cascade damage near the Y 2Ti2O7 nanocluster/ferrite interface in nanostructured ferritic alloys*, Chin. Phys. Lett. B. 26 (2017) 1-7, https://doi.org/10.1088/1674-1056/26/7/076106.
  67. K.D. Hammond, H.-J. Lee Voigt, L.A. Marus, N. Juslin, B.D. Wirth, Simple pairwise interactions for hybrid Monte Carloemolecular dynamics simulations of titania/yttria-doped iron, J. Phys. Condens. Matter 25 (2013) 55402-55413, https://doi.org/10.1088/0953-8984/25/5/055402.
  68. S. Queyreau, G. Monnet, B. Devincre, Orowan strengthening and forest hardening superposition examined by dislocation dynamics simulations, Acta Mater. 58 (2010) 5586-5595, https://doi.org/10.1016/j.actamat.2010.06.028.
  69. Z. Guo, W. Sha, Quantification of precipitation hardening and evolution of precipitates, Mater. Trans. 43 (2002) 1273-1282, https://doi.org/10.2320/matertrans.43.1273.
  70. S.Y. Hu, S. Schmauder, L.Q. Chen, Atomistic simulations of interactions between Cu precipitates and an edge dislocation in a B . C . C . Fe single crystal, Phys. Status Solidi B 220 (2000) 845-856.
  71. D.J. Bacon, Y.N. Osetsky, Hardening due to copper precipitates in ${\alpha}$-iron studied by atomic-scale modelling, J. Nucl. Mater. (2004) 329-333, https://doi.org/10.1016/j.jnucmat.2004.04.256, 1233-1237.
  72. K.C. Russell, L.M. Brown, A dispersion strengthening model based on differing elastic moduli applied to the iron-copper system, Acta Metall. 20 (1972).
  73. D.J. Bacon, U.F. Kocks, R.O. Scattergood, The effect of dislocation selfinteraction on the orowan stress, Philos. Mag. A (1973), https://doi.org/10.1080/14786437308227997.
  74. A. Lehtinen, L. Laurson, F. Granberg, K. Nordlund, M.J. Alava, Effects of precipitates and dislocation loops on the yield stress of irradiated iron, Sci. Rep. 8 (2018) 1-12, https://doi.org/10.1038/s41598-018-25285-z.
  75. D. Terentyev, D.J. Bacon, Y.N. Osetsky, Interaction of an edge dislocation with voids in ${\alpha}$-iron modelled with different interatomic potentials, J. Phys. Condens. Matter 445007 (2008) 445007, https://doi.org/10.1088/0953-8984/20/44/445007.
  76. M. Peach, J.S. Koehler, The forces exerted on dislocations and the stress fields produced by them, Phys. Rev. 80 (1950), https://doi.org/10.1103/PhysRev.80.436.
  77. W. Cai, V.V. Bulatov, Mobility laws in dislocation dynamics simulations, Mater. Sci. Eng. A 387-389 (2004) 277-281, https://doi.org/10.1016/j.msea.2003.12.085.