References
- J.P. Wharry, M.J. Swenson, K.H. Yano, A review of the irradiation evolution of dispersed oxide nanoparticles in the b.c.c. Fe-Cr system: current understanding and future directions, J. Nucl. Mater. 486 (2017) 11-20, https://doi.org/10.1016/j.jnucmat.2017.01.009.
- S. Ukai, M. Fujiwara, Perspective of ODS alloys application in nuclear environments, J. Nucl. Mater. 307-311 (2002) 749-757, https://doi.org/10.1016/S0022-3115(02)01043-7.
- S.J. Zinkle, G.S. Was, Materials challenges in nuclear energy, Acta Mater. 61 (2013) 735-758, https://doi.org/10.1016/j.actamat.2012.11.004.
- L. Yang, Y. Jiang, G.R. Odette, W. Zhou, Z. Liu, Y. Liu, Nonstoichiometry and relative stabilities of Y2Ti2O7polar surfaces: a density functional theory prediction, Acta Mater. 61 (2013) 7260-7270, https://doi.org/10.1016/j.actamat.2013.08.031.
- M. Dholakia, S. Chandra, S.M. Jaya, A comparative study of topology and local disorder in Y2O3, Y2TiO5, and Y2Ti2O7 crystals Manan, J. Alloy. Comp. 739 (2018) 1037-1047, https://doi.org/10.1016/j.jallcom.2017.12.244.
- Y.N. Osetsky, D.J. Bacon, An atomic-level model for studying the dynamics of edge dislocations in metals, Model. Simul. Mater. Sci. Eng. 11 (2003) 427-446, https://doi.org/10.1088/0965-0393/11/4/302.
- D.A. Terentyev, G. Bonny, L. Malerba, Strengthening due to coherent Cr precipitates in Fe-Cr alloys: atomistic simulations and theoretical models, Acta Mater. 56 (2008) 3229-3235, https://doi.org/10.1016/j.actamat.2008.03.004.
- L.K. Mansur, A.F. Rowcliffe, R.K. Nanstad, S.J. Zinkle, W.R. Corwin, R.E. Stoller, Materials needs for fusion, Generation IV fission reactors and spallation neutron sources - similarities and differences, J. Nucl. Mater. (2004) 329-333, https://doi.org/10.1016/j.jnucmat.2004.04.016, 166-172.
- K.L. Murty, I. Charit, Structural materials for Gen-IV nuclear reactors: challenges and opportunities, J. Nucl. Mater. 383 (2008) 189-195, https://doi.org/10.1016/j.jnucmat.2008.08.044.
- A. Lehtinen, L. Laurson, F. Granberg, K. Nordlund, M.J. Alava, Effects of precipitates and dislocation loops on the yield stress of irradiated iron, Sci. Rep. 8 (2018) 1-12, https://doi.org/10.1038/s41598-018-25285-z.
- S. Kodambaka, S.V. Khare, W. Swlech, K. Ohmori, I. Petrov, J.E. Greene, Dislocation-driven surface dynamics on solids, Nature 429 (2004) 49-52, https://doi.org/10.1038/nature02495.
- Y. Ijiri, N. Oono, S. Ukai, H. Yu, S. Ohtsuka, Y. Abe, Y. Matsukawa, Consideration of the oxide particleedislocation interaction in 9Cr-ODS steel, Philos. Mag. A 97 (2017), https://doi.org/10.1080/14786435.2017.1288942.
- D.J. Srolovitz, R.A. Petkovic-luton, M.J. Litton, Diffusional relaxation of the dislocation-inclusion repulsion, Philos. Mag. A Phys. Condens. Matter, Struct. Defects Mech. Prop. 48 (1983) 795-809, https://doi.org/10.1080/01418618308236545.
- D. Terentyev, G. Bonny, C. Domain, G. Monnet, L. Malerba, Mechanisms of radiation strengthening in Fe-Cr alloys as revealed by atomistic studies, J. Nucl. Mater. 442 (2013) 470-485, https://doi.org/10.1016/j.jnucmat.2013.03.054.
- Z. Zhang, C.T. Liu, M.K. Miller, X.L. Wang, Y. Wen, T. Fujita, A. Hirata, M. Chen, G. Chen, B.A. Chin, A nanoscale co-precipitation approach for property enhancement of Fe-base alloys, Sci. Rep. 3 (2013) 1-6, https://doi.org/10.1038/srep01327.
- D. Hull, D.J. Bacon, Indroduction to Dislocations, fifth ed., Butterworth-Heinemann, 2011.
- D. Terentyev, P. Grammatikopoulos, D.J. Bacon, Y.N. Osetsky, Simulation of the interaction between an edge dislocation and a < 1 0 0> interstitial dislocation loop in Alpha-iron, Acta Mater. 56 (2008) 5034-5046, https://doi.org/10.1016/j.actamat.2008.06.032.
- A. Lehtinen, F. Granberg, L. Laurson, K. Nordlund, M.J. Alava, Multiscale modeling of dislocation-precipitate interactions in Fe: from molecular dynamics to discrete dislocations, Phys. Rev. E. 93 (2016) 1-9, https://doi.org/10.1103/PhysRevE.93.013309.
- A. Keyhani, R. Roumina, Dislocation-precipitate interaction map, Comput. Mater. Sci. 141 (2018) 153-161, https://doi.org/10.1016/j.commatsci.2017.09.036.
- A. Takahashi, N.M. Ghoniem, A computational method for dislocationprecipitate interaction, J. Mech. Phys. Solids 56 (2008) 1534-1553, https://doi.org/10.1016/j.jmps.2007.08.002.
- S. Kondo, T. Mitsuma, N. Shibata, Y. Ikuhara, Direct observation of individual dislocation interaction processes with grain boundaries, Sci. Adv. 2 (2016) 1-8, https://doi.org/10.1126/sciadv.1501926.
- I. Ringdalen, S. Materials, N. Trondheim, Dislocation dynamics study of precipitate hardening in Al-Mg-Si alloys with input from experimental characterization, MRS Commun. (2017) 1-8, https://doi.org/10.1557/mrc.2017.78.
- A.V. Bakaev, D.A. Terentyev, P.Y. Grigorev, E.E. Zhurkin, Atomistic simulation of the interaction between mobile edge dislocations and radiation-induced defects in Fe-Ni-Cr austenitic alloys, J. Surf. Investig. X-Ray, Synchrotron Neutron Tech. 8 (2014), https://doi.org/10.1134/S1027451014020062.
- Y. Long, N.X. Chen, Atomistic Simulation of Misfit Dislocation in Metal/Oxide Interfaces 42, 2008, pp. 426-433, https://doi.org/10.1016/j.commatsci.2007.08.007.
- F. Granberg, Interaction Mechanisms of Edge Dislocations with Obstacles in Fe and Metal Alloys, 2016.
- D. Terentyev, G. Bonny, C. Domain, G. Monnet, L. Malerba, Mechanisms of radiation strengthening in Fe-Cr alloys as revealed by atomistic studies, J. Nucl. Mater. 442 (2013) 470-485, https://doi.org/10.1016/j.jnucmat.2013.03.054.
-
Y.N. Osetsky, D.J. Bacon, V. Mohles, Atomic modelling of strengthening mechanisms due to voids and copper precipitates in
${\alpha}$ -iron, Philos. Mag. A 83 (2003) 3623-3641, https://doi.org/10.1080/14786430310001603364. - Y.N. Osetsky, A.G. Mikhin, A. Serra, Computer simulation study of copper precipitates in a-iron, J. Nucl. Mater. 212-215 (1994) 236-240, https://doi.org/10.1016/0022-3115(94)90063-9.
- C.S. Becquart, C. Domain, Modeling microstructure and irradiation effects, Metall. Mater. Trans. A 42 (2011) 852-870, https://doi.org/10.1007/s11661-010-0460-7.
- A. Simar, H.J.L. Voigt, B.D. Wirth, Molecular dynamics simulations of dislocation interaction with voids in nickel, Comput. Mater. Sci. 50 (2011) 1811-1817, https://doi.org/10.1016/j.commatsci.2011.01.020.
- J. Li, B. Liu, Q.H. Fang, Z.W. Huang, Y.W. Liu, Atomic-scale strengthening mechanism of dislocation-obstacle interaction in silicon carbide particlereinforced copper matrix nanocomposites, Ceram. Int. 43 (2017) 3839-3846, https://doi.org/10.1016/j.ceramint.2016.12.040.
- J. Deres, L. Proville, M.C. Marinica, Dislocation depinning from nano-sized irradiation defects in a bcc iron model, Acta Mater. 99 (2015) 99-105, https://doi.org/10.1016/j.actamat.2015.07.067.
- L. Proville, B. Bako, Dislocation depinning from ordered nanophases in a model fcc crystal: from cutting mechanism to Orowan looping, Acta Mater. 58 (2010) 5565-5571, https://doi.org/10.1016/j.actamat.2010.06.018.
- Y. Xiang, D.J. Srolovitz, L.-T. Cheng, E. Weinan, Level set simulations of dislocation-particle bypass mechanisms, Acta Mater. 52 (2004) 1745-1760. https://doi.org/10.1016/j.actamat.2003.12.016.
- C.V. Singh, D.H. Warner, Mechanisms of Guinier-Preston zone hardening in the athermal limit, Acta Mater. (2010), https://doi.org/10.1016/j.actamat.2010.06.055.
- F. Granberg, D. Terentyev, K. Nordlund, Interaction of dislocations with carbides in BCC Fe studied by molecular dynamics, J. Nucl. Mater. 460 (2015) 23-29, https://doi.org/10.1016/j.jnucmat.2015.01.064.
- F. Granberg, D. Terentyev, K. Nordlund, Interaction of dislocations with carbides in BCC Fe studied by molecular dynamics, Fusion Sci. Technol. 66 (2014) 23-29, https://doi.org/10.1016/j.jnucmat.2015.01.064.
- X.H. Long, D. Wang, W. Setyawan, P. Liu, N. Gao, R.J. Kurtz, Z.G. Wang, X.L. Wang, Atomistic simulation of interstitial dislocation loop evolution under applied stresses in BCC iron, Phys. Status Solidi Appl. Mater. Sci. 215 (2018) 1-5, https://doi.org/10.1002/pssa.201700494.
- X. Zhang, H. Deng, S. Xiao, X. Li, W. Hu, Atomistic simulations of solid solution strengthening in Ni-based superalloy, Comput. Mater. Sci. 68 (2013) 132-137, https://doi.org/10.1016/j.commatsci.2012.10.002.
-
X. Zhang, G. Lu, How Cr changes the dislocation core structure of
${\alpha}$ -Fe: the role of magnetism, J. Phys. Condens. Matter 25 (2013), https://doi.org/10.1088/0953-8984/25/8/085403. - K. Yasunaga, M. Iseki, M. Kiritani, Dislocation structures introduced by highspeed deformation in bcc metals, Mater. Sci. Eng. A 350 (2003) 76-80, https://doi.org/10.1016/S0921-5093(02)00697-4.
- Z. Huang, J.E. Allison, A. Misra, Interaction of glide dislocations with extended precipitates in Mg-Nd alloys, Sci. Rep. 8 (2018) 1-12, https://doi.org/10.1038/s41598-018-20629-1.
-
D. Terentyev, D.J. Bacon, Y.N. Osetsky, Interaction of an edge dislocation with voids in
${\alpha}$ -iron modelled with different interatomic potentials, J. Phys. Condens. Matter 20 (2008), https://doi.org/10.1088/0953-8984/20/44/445007. -
D. Terentyev, P. Grammatikopoulos, D.J. Bacon, Y.N. Osetsky, Simulation of the interaction between an edge dislocation and a 〈1 0 0〉 interstitial dislocation loop in
${\alpha}$ -iron, Acta Mater. 56 (2008) 5034-5046, https://doi.org/10.1016/j.actamat.2008.06.032. - C.S. Shin, M.C. Fivel, M. Verdier, K.H. Oh, Dislocation-impenetrable precipitate interaction: a three-dimensional discrete dislocation dynamics analysis, Philos. Mag. A 83 (2003) 3691-3704, https://doi.org/10.1080/14786430310001599379.
- M.V. Rodriguez, P.J. Ficalora, The Mechanism of a Hydrogen - Dislocation Interaction in B. C.C. Metals : embrittlement and Dislocation Motion 85, 1987, pp. 43-52. https://doi.org/10.1016/0025-5416(87)90465-4
- F. Granberg, Interaction Mechanisms of Edge Dislocations with Obstacles in Fe and Metal Alloys, 2016.
- M. Popova, Y.L. Shen, T.A. Khraishi, Atomistic simulation of dislocation interactions in a model crystal subjected to shear, Mol. Simul. 31 (2005) 1043-1049, https://doi.org/10.1080/08927020500349999.
- G. Bonny, A. Bakaev, D. Terentyev, E. Zhurkin, M. Posselt, Atomistic study of the hardening of ferritic iron by Ni-Cr decorated dislocation loops, J. Nucl. Mater. 498 (2018) 430-437, https://doi.org/10.1016/j.jnucmat.2017.11.016.
- T. Hatano, H. Matsui, Molecular dynamics investigation of dislocation pinning by a nanovoid in copper, Phys. Rev. B Condens. Matter 72 (2005) 1-8, https://doi.org/10.1103/PhysRevB.72.094105.
- G. Monnet, Multiscale modeling of precipitation hardening: application to the Fe-Cr alloys, Acta Mater. 95 (2015) 302-311, https://doi.org/10.1016/j.actamat.2015.05.043.
- J. Xu, C. Wang, W. Zhang, C. Ren, H. Gong, P. Huai, Atomistic simulations of the interactions of helium with dislocations in nickel, Nucl. Mater. Energy 7 (2016) 12-19, https://doi.org/10.1016/j.nme.2016.02.007.
-
E. Martinez, D. Schwen, A. Caro, Helium segregation to screw and edge dislocations in
${\alpha}$ -iron and their yield strength, Acta Mater. 84 (2015) 208-214, https://doi.org/10.1016/j.actamat.2014.10.066. - S. Plimpton, Fast parallel algorithms for short - range molecular dynamics, J. Comput. Phys. 117 (1995) 1-19, https://doi.org/10.1006/jcph.1995.1039.
- M. Dholakia, S. Chandra, M.C. Valsakumar, S. Mathi Jaya, Atomistic simulations of displacement cascades in Y2O3 single crystal, J. Nucl. Mater. 454 (2014) 96-104, https://doi.org/10.1016/j.jnucmat.2014.07.044.
- F. Hanic, M. Hartmanova, G.G. Knab, A.A. Urusovskaya, K.S. Bagdasarov, Real structure of undoped Y2O3 single crystals, Acta Crystallogr. B 40 (1984) 76-82, https://doi.org/10.1107/s0108768184001774.
-
A.B. Belonoshko, G. Gutierrez, R. Ahuja, B. Johansson, Molecular dynamics simulation of the structure of yttria
$Y_2O_3$ phases using pairwise interactions, Phys. Rev. B Condens. Matter 64 (2001), https://doi.org/10.1103/PhysRevB.64.184103. - M. Dholakia, S. Chandra, S.M. Jaya, Properties of Y2TiO5 and Y2Ti2O7 crystals: development of novel interatomic potentials, J. Alloy. Comp. 739 (2018) 1037-1047, https://doi.org/10.1016/j.jallcom.2017.12.244.
- M. Dholakia, S. Chandra, S.M. Jaya, Molecular dynamics studies of displacement cascades in Fe-Y 2 TiO 5 system, in: AIP Conf. Proc., 2016, pp. 1-4, https://doi.org/10.1063/1.4948212.
- M.P. Higgins, C.Y. Lu, Z. Lu, L. Shao, L.M. Wang, F. Gao, Crossover from disordered to core-shell structures of nano-oxide Y2O3 dispersed particles in Fe, Appl. Phys. Lett. 109 (2016), https://doi.org/10.1063/1.4959776, 031911.
- D.J. Bacon, Y.N. Osetsky, D. Rodney, Dislocation-obstacle interactions at the atomic level, in: Dislocations in Solids, 2009, pp. 1-90, https://doi.org/10.1016/S1572-4859(09)01501-0.
- S. Queyreau, J. Marian, M.R. Gilbert, B.D. Wirth, Edge dislocation mobilities in bcc Fe obtained by molecular dynamics, Phys. Rev. B Condens. Matter (2011), https://doi.org/10.1103/PhysRevB.84.064106.
- M. Klimiankou, R. Lindau, A. Moslang, HRTEM study of yttrium oxide particles in ODS steels for fusion reactor application, J. Cryst. Growth 249 (2003) 381-387. http://doi.org/10.1016/S0022-0248(02)02134-6.
- A. Stukowski, Visualization and analysis of atomistic simulation data with OVITO the open visualization tool, Model. Simul. Mater. Sci. Eng. 18 (2010), https://doi.org/10.1088/0965-0393/18/1/015012, 015012.
- T. Lazauskas, S.D. Kenny, R. Smith, G. Nagra, M. Dholakia, M.C. Valsakumar, Simulating radiation damage in a bcc Fe system with embedded yttria nanoparticles, J. Nucl. Mater. 437 (2013) 317-325, https://doi.org/10.1016/j.jnucmat.2013.02.016.
- Y. Sun, W. Lai, Molecular dynamics simulations of cascade damage near the Y 2Ti2O7 nanocluster/ferrite interface in nanostructured ferritic alloys*, Chin. Phys. Lett. B. 26 (2017) 1-7, https://doi.org/10.1088/1674-1056/26/7/076106.
- K.D. Hammond, H.-J. Lee Voigt, L.A. Marus, N. Juslin, B.D. Wirth, Simple pairwise interactions for hybrid Monte Carloemolecular dynamics simulations of titania/yttria-doped iron, J. Phys. Condens. Matter 25 (2013) 55402-55413, https://doi.org/10.1088/0953-8984/25/5/055402.
- S. Queyreau, G. Monnet, B. Devincre, Orowan strengthening and forest hardening superposition examined by dislocation dynamics simulations, Acta Mater. 58 (2010) 5586-5595, https://doi.org/10.1016/j.actamat.2010.06.028.
- Z. Guo, W. Sha, Quantification of precipitation hardening and evolution of precipitates, Mater. Trans. 43 (2002) 1273-1282, https://doi.org/10.2320/matertrans.43.1273.
- S.Y. Hu, S. Schmauder, L.Q. Chen, Atomistic simulations of interactions between Cu precipitates and an edge dislocation in a B . C . C . Fe single crystal, Phys. Status Solidi B 220 (2000) 845-856.
-
D.J. Bacon, Y.N. Osetsky, Hardening due to copper precipitates in
${\alpha}$ -iron studied by atomic-scale modelling, J. Nucl. Mater. (2004) 329-333, https://doi.org/10.1016/j.jnucmat.2004.04.256, 1233-1237. - K.C. Russell, L.M. Brown, A dispersion strengthening model based on differing elastic moduli applied to the iron-copper system, Acta Metall. 20 (1972).
- D.J. Bacon, U.F. Kocks, R.O. Scattergood, The effect of dislocation selfinteraction on the orowan stress, Philos. Mag. A (1973), https://doi.org/10.1080/14786437308227997.
- A. Lehtinen, L. Laurson, F. Granberg, K. Nordlund, M.J. Alava, Effects of precipitates and dislocation loops on the yield stress of irradiated iron, Sci. Rep. 8 (2018) 1-12, https://doi.org/10.1038/s41598-018-25285-z.
-
D. Terentyev, D.J. Bacon, Y.N. Osetsky, Interaction of an edge dislocation with voids in
${\alpha}$ -iron modelled with different interatomic potentials, J. Phys. Condens. Matter 445007 (2008) 445007, https://doi.org/10.1088/0953-8984/20/44/445007. - M. Peach, J.S. Koehler, The forces exerted on dislocations and the stress fields produced by them, Phys. Rev. 80 (1950), https://doi.org/10.1103/PhysRev.80.436.
- W. Cai, V.V. Bulatov, Mobility laws in dislocation dynamics simulations, Mater. Sci. Eng. A 387-389 (2004) 277-281, https://doi.org/10.1016/j.msea.2003.12.085.