Acknowledgement
이 논문은 2019년 대한민국 교육부와 한국연구재단의 지원을 받아 수행된 연구임(NRF-2019S1A5A2A01046529).
References
- Affonso, C., A. L. D. Rossi, F. H. A. Vieira, and A. C. P. de Leon Ferreira, "Deep learning for biological image classification", Expert Systems with Applications, Vol.85, 2017, pp. 114-122. https://doi.org/10.1016/j.eswa.2017.05.039
- Arlot, S. and A. Celisse, "A survey of cross-validation procedures for model selection", Statistics Surveys, Vol.4, 2010, pp. 40-79. https://doi.org/10.1214/09-SS054
- Ballings, M., D. Van den Poel, N. Hespeels, and R. Gryp, "Evaluating multiple classifiers for stock price direction prediction", Expert Systems with Applications, Vol.42, No.20, 2015, pp. 7046-7056. https://doi.org/10.1016/j.eswa.2015.05.013
- Chang, F., "Deep learning for biological image classification", Neural Networks & Machine Learning, Vol.1, No.1, 2017, pp. 2-2.
- Chong, E., C. Han, and F. C. Park, "Deep learning networks for stock market analysis and prediction: Methodology, data representations, and case studies", Expert Systems with Applications, Vol.83, 2017, pp. 187-205. https://doi.org/10.1016/j.eswa.2017.04.030
- Dang, L. M., S. I. Hassan, S. Im, and H. Moon, "Face image manipulation detection based on a convolutional neural network", Expert Systems with Applications, Vol.129, 2019, pp. 156-168. https://doi.org/10.1016/j.eswa.2019.04.005
- Di Persio, L. and O. Honchar, "Artificial neural networks architectures for stock price prediction: Comparisons and applications", International Journal of Circuits, Systems and Signal Processing, Vol.10, 2016, pp. 403-413.
- Eo, K. S. and K. C. Lee, "Predicting stock price direction by using data mining methods", Journal of the Korea Society of Computer and Information, Vol.22, No.11, 2017, pp. 111-116. https://doi.org/10.9708/JKSCI.2017.22.11.111
- Gunduz, H., Y. Yaslan, and Z. Cataltepe, "Intraday prediction of Borsa Istanbul using convolutional neural networks and feature correlations", Knowledge-Based Systems, Vol.137, 2017, pp. 138-148. https://doi.org/10.1016/j.knosys.2017.09.023
- Hiransha, M., E. A. Gopalakrishnan, V. K. Menon, and K. P. Soman, "NSE stock market prediction using deep-learning models", Procedia Computer Science, Vol.132, 2018, pp. 1351-1362. https://doi.org/10.1016/j.procs.2018.05.050
- Hosaka, T., "Bankruptcy prediction using imaged financial ratios and convolutional neural networks", Expert Systems with Applications, Vol.117, 2019, pp. 287-299. https://doi.org/10.1016/j.eswa.2018.09.039
- Hoseinzade, E. and S. Haratizadeh "CNNpred: CNN-based stock market prediction using a diverse set of variables", Expert Systems with Applications, Vol.129, 2019, pp. 273-285. https://doi.org/10.1016/j.eswa.2019.03.029
- Hu, H., L. Tang, S. Zhang, and H. Wang, "Predicting the direction of stock markets using optimized neural networks with Google Trends", Neurocomputing, Vol.285, 2018, pp. 188-195. https://doi.org/10.1016/j.neucom.2018.01.038
- Huang, W., Y. Nakamori, and S. Y. Wang, "Forecasting stock market movement direction with support vector machine", Computers & Operations Research, Vol.32, No.10, 2005, pp. 2513-2522. https://doi.org/10.1016/j.cor.2004.03.016
- Joo, I. T. and S. H. Choi, "Stock prediction model based on bidirectional LSTM recurrent neural network", Korea Information Electron Communication Technology, Vol.11, No.2, 2018, pp. 204-208.
- Kim, K., "Financial time series forecasting using support vector machines", Neurocomputing, Vol.55, 2003, No.1-2, pp. 307-319. https://doi.org/10.1016/S0925-2312(03)00372-2
- Kingma, D. P. and J. Ba, "Adam: A method for stochastic optimization", The 3rd International Conference on Learning Representations, 2014, arXiv preprint arXiv:1412.6980.
- Kraus, M. and S. Feuerriegel, "Decision support from financial disclosures with deep neural networks and transfer learning", Decision Support Systems, Vol.104, 2017, pp. 38-48. https://doi.org/10.1016/j.dss.2017.10.001
- LeCun, Y. and Y. Bengio, "Convolutional networks for images, speech, and time series", In M. Arbib, editor, The Handbook of Brain Theory and Neural Networks, MIT Press, Cambridge, Massachusetts, 1995, pp. 255-258.
- LeCun, Y., L. Bottou, Y. Bengio, and P. Haffner, "Gradient-based learning applied to document recognition", Proceedings of the IEEE, Vol.86, No.11, 1998, pp. 2278-2324. https://doi.org/10.1109/5.726791
- Lee, M. C., "Using support vector machine with a hybrid feature selection method to the stock trend prediction", Expert Systems with Applications, Vol.36, No.8, 2009, pp. 10896-10904. https://doi.org/10.1016/j.eswa.2009.02.038
- Lee, M. S. and H. C. Ahn, "A time series graph based convolutional neural network model for effective input variable pattern learning: Application to the prediction of stock market", Journal of Intelligence and Information Systems, Vol.24, No.1, 2018, pp. 167-181.
- Moghaddam, M., Q. Chen, and A. V. Deshmukh, "A neuro-inspired computational model for adaptive fault diagnosis", Expert Systems with Applications, Vol.140, 2020, p. 112879.
- Ou, P. and H. Wang, "Prediction of stock market index movement by ten data mining techniques", Modern Applied Science, Vol.3, No.12, 2009, pp. 28-42. https://doi.org/10.5539/mas.v3n12p28
- Patel, J., S. Shah, P. Thakkar, and K. Kotecha, "Predicting stock and stock price index movement using trend deterministic data preparation and machine learning techniques", Expert Systems with Applications, Vol.42, No.1, 2015, pp. 259-268. https://doi.org/10.1016/j.eswa.2014.07.040
- Pour, M. P. and H. Seker, "Transform domain representation-driven convolutional neural networks for skin lesion segmentation", Expert Systems with Applications, Vol.144, p. 113129, 2020.
- Qiu, M., Y. Song, and F. Akagi, "Application of artificial neural network for the prediction of stock market returns: The case of the Japanese stock market", Chaos, Solitons & Fractals, Vol.85, 2016, pp. 1-7. https://doi.org/10.1016/j.chaos.2016.01.004
- Sellami, A. and H. Hwang, "A robust deep convolutional neural network with batch-weighted loss for heartbeat classification", Expert Systems with Applications, Vol.122, 2019, pp. 75-84, https://doi.org/10.1016/j.eswa.2018.12.037
- Sezer, O. B. and A. M. Ozbayoglu, "Algorithmic financial trading with deep convolutional neural networks: Time series to image conversion approach", Applied Soft Computing, Vol. 70, 2018, pp. 525-538. https://doi.org/10.1016/j.asoc.2018.04.024
- Soomro, T. A., A. J. Afifi, J. Gao, O. Hellwich, L. Zheng, and M. Paul, "Strided fully convolutional neural network for boosting the sensitivity of retinal blood vessels segmentation", Expert Systems with Applications, Vol. 134, 2019, pp. 36-52. https://doi.org/10.1016/j.eswa.2019.05.029
- Ting, F. F., Y. J. Tan, and K. S. Sim, "Convolutional neural network improvement for breast cancer classification", Expert Systems with Applications, Vol.120, 2019, pp. 103-115. https://doi.org/10.1016/j.eswa.2018.11.008
- Wang, Q., W. Xu, and H. Zheng, "Combining the wisdom of crowds and technical analysis for financial market prediction using deep random subspace ensembles", Neurocomputing, Vol.299, 2018, pp. 51-61. https://doi.org/10.1016/j.neucom.2018.02.095
- Yang, H., C. Yuan, B. Du, Y. Li, J. Xing, W. Hu, and S. J. Maybank, "Asymmetric 3d convolutional neural networks for action recognition", Pattern Recognition, Vol.85, 2019, pp. 1-12. https://doi.org/10.1016/j.patcog.2018.07.028
- Yuan, X., L. Xie, and M. Abouelenien, "A regularized ensemble framework of deep learning for cancer detection from multi-class, imbalanced training data", Pattern Recognition, Vol.77, 2018, pp. 160-172. https://doi.org/10.1016/j.patcog.2017.12.017
- Zhong, X. and D. Enke, "Forecasting daily stock market return using dimensionality reduction", Expert Systems with Applications, Vol.67, 2017, pp. 126-139. https://doi.org/10.1016/j.eswa.2016.09.027