과제정보
This work was supported by Open Research Fund Program of State key Laboratory of Hydroscience and Engineering (sklhse-2019-C-05).
참고문헌
- Abd, A.M. and Abd, S.M. (2017), "Modelling the strength of lightweight foamed concrete using support vector machine (SVM)", Case Stud. Constr. Mater., 6, 8-15. http://dx.doi.org/10.1016/j.cscm.2016.11.002.
- Affonso, C., Debiaso Rossi, A.L., Antunes Vieira, F.H. and de Leon Ferreira de Carvalho, A.C.P. (2017), "Deep learning for biological image classification", Exp. Syst. Appl., 85, 114-122. http://dx.doi.org/10.1016/j.eswa.2017.05.039.
- An, X., Wu, Q., Jin, F., Huang, M., Zhou, H., Chen, C. and Liu, C. (2014), "Rock-filled concrete, the new norm of SCC in hydraulic engineering in China", Cement Concrete Compos., 54, 89-99. http://dx.doi.org/10.1016/j.cemconcomp.2014.08.001.
- Beaupre, D. (1994), "Rheology of high performance shotcrete", Ph. D. Thesis, Uni. Of British Columbia, Canada.
- Bengio, Y., Courville, A. and Vincent, P. (2013), "Representation learning: A review and new perspectives", IEEE Tran. Pattern Anal. Mach. Intel., 35(8), 1798-1828. http://dx.doi.org/10.1109/tpami.2013.50.
- Cabaret, F., Bonnot, S., Fradette, L. and Tanguy, P.A. (2007), "Mixing time analysis using colorimetric methods and image processing", Indus. Eng. Chem. Res., 46(14), 5032-5042. http://dx.doi.org/10.1021/ie0613265.
- Cazacliu, B. and Roquet, N. (2009), "Concrete mixing kinetics by means of power measurement", Cement Concrete Res., 39(3), 182-194. http://dx.doi.org/10.1016/j.cemconres.2008.12.005.
- Chopin, D., Cazacliu, B., de Larrard, F. and Schell, R. (2007), "Monitoring of concrete homogenisation with the power consumption curve", Mater. Struct., 40(9), 897-907. http://dx.doi.org/10.1617/s11527-006-9187-8.
- Chou, J.S., Tsai, C.F., Anh-Duc, P. and Lu, Y.H. (2014), "Machine learning in concrete strength simulations: Multi-nation data analytics", Constr. Build. Mater., 73, 771-780. http://dx.doi.org/10.1016/j.conbuildmat.2014.09.054.
- Daumann, B. and Nirschl, H. (2008), "Assessment of the mixing efficiency of solid mixtures by means of image analysis", Powd. Technol., 182(3), 415-423. http://dx.doi.org/10.1016/j.powtec.2007.07.006.
- Deng, J., Dong, W., Socher, R., Li, L.J., Li, K. and Fei-Fei, L. (2009), "Imagenet: A large-scale hierarchical image database", 2009 IEEE Conference on Computer Vision and Pattern Recognition, 248-255.
- Ding, Z. and An, X. (2017), "A method for real-time moisture estimation based on self-compacting concrete workability detected during the mixing process", Constr. Build. Mater., 139, 123-131. http://dx.doi.org/10.1016/j.conbuildmat.2017.02.047.
- Ding, Z. and An, X. (2018), "Deep learning approach for estimating workability of self-compacting concrete from mixing image sequences", Adv. Mater. Sci. Eng., 2018, Article ID 6387930, 16. http://dx.doi.org/10.1155/2018/6387930.
- Donahue, J., Hendricks, L.A., Rohrbach, M., Venugopalan, S., Guadarrama, S., Saenko, K. and Darrell, T. (2017), "Long-term recurrent convolutional networks for visual recognition and description", Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition , 2625-2634.
- Gidaris, S. and Komodakis, N. (2015), "Object detection via a multi-region and semantic segmentation-aware cnn model", Proceedings of the IEEE International Conference on Computer Vision, 1134-1142.
- Girshick, R., Donahue, J., Darrell, T. and Malik, J. (2014), "Rich feature hierarchies for accurate object detection and semantic segmentation", Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 580-587.
- Hariri-Ardebili, M.A. and Pourkamali-Anaraki, F. (2018), "Support vector machine based reliability analysis of concrete dams", Soil Dyn. Earthq. Eng., 104, 276-295. http://dx.doi.org/10.1016/j.soildyn.2017.09.016.
- He, K., Zhang, X., Ren, S. and Sun, J. (2014), "Spatial pyramid pooling in deep convolutional networks for visual recognition", IEEE Tran. Pattern Anal. Mach. Intel., 37(9), 1904-1916.. https://doi.org/10.1109/TPAMI.2015.2389824
- Hutchinson, T.C. and Chen, Z.Q. (2006), "Improved image analysis for evaluating concrete damage", J. Comput. Civil Eng., 20(3), 210-216. http://dx.doi.org/10.1061/(asce)0887-3801(2006)20:3(210).
- Lee, B.Y., Kim, Y.Y., Yi, S.T. and Kim, J.K. (2013), "Automated image processing technique for detecting and analysing concrete surface cracks", Struct. Infrastr. Eng., 9(6), 567-577. http://dx.doi.org/10.1080/15732479.2011.593891.
- Li, S. and An, X. (2014), "Method for estimating workability of self-compacting concrete using mixing process images", Comput. Concrete, 13(6), 781-798. http://dx.doi.org/10.12989/cac.2014.13.6.781.
- Marinoni, N., Pavese, A., Foi, M. and Trombino, L. (2005), "Characterisation of mortar morphology in thin sections by digital image processing", Cement Concrete Res., 35(8), 1613-1619. http://dx.doi.org/10.1016/j.cemconres.2004.09.015.
- Okamura, H. and Ouchi, M. (2003), "Self-compacting concrete", J. Adv. Concrete Technol., 1(1), 5-15. http://dx.doi.org/10.3151/jact.1.5.
- Taffese, W.Z. and Sistonen, E. (2017), "Machine learning for durability and service-life assessment of reinforced concrete structures: Recent advances and future directions", Auto. Constr., 77, 1-14. http://dx.doi.org/10.1016/j.autcon.2017.01.016.
- Taffese, W.Z., Sistonen, E. and Puttonen, J. (2015), "CaPrM: Carbonation prediction model for reinforced concrete using machine learning methods", Constr. Build. Mater., 100, 70-82. http://dx.doi.org/10.1016/j.conbuildmat.2015.09.058.
- Wu, Q. and An, X. (2014), "Development of a mix design method for SCC based on the rheological characteristics of paste", Constr. Build. Mater., 53. http://dx.doi.org/10.1016/j.conbuildmat.2013.12.008.
- Yaseen, Z.M., Deo, R.C., Hilal, A., Abd, A.M., Bueno, L.C., Salcedo-Sanz, S. and Nehdi, M.L. (2018), "Predicting compressive strength of lightweight foamed concrete using extreme learning machine model", Adv. Eng. Softw., 115, 112-125. http://dx.doi.org/10.1016/j.advengsoft.2017.09.004.
- Yokoyama, S. and Matsumoto, T. (2017), "Development of an automatic detector of cracks in concrete using machine learning", Procedia Eng., 171, 1250-1255. https://doi.org/10.1016/j.proeng.2017.01.418
- Zhang, A., Wang, K.C. P., Li, B., Yang, E., Dai, X., Peng, Y., Fei, Y., Liu, Y., Li, J.Q. and Chen, C. (2017), "Automated pixel-level pavement crack detection on 3D asphalt surfaces using a deeplearning network", Comput. Aid. Civil Infrastr. Eng., 32(10), 805-819. http://dx.doi.org/10.1111/mice.12297.