DOI QR코드

DOI QR Code

주류공정 내 L-alanine·염 스크러버를 이용한 고농도 이산화탄소 저감 효율 평가

Evaluation of high concentration carbon dioxide reduction efficiency using L-alanine·salt scrubber in Liquor factory

  • 김흥래 ((주)평화엔지니어링 연구원) ;
  • 이준형 ((주)평화엔지니어링 연구원) ;
  • 박형준 ((주)평화엔지니어링 연구원) ;
  • 박기태 (한국에너지기술연구원) ;
  • 박일건 ((주)평화엔지니어링 연구원)
  • Kim, Heung-Rae (Pyunghwa Engineering Consultants Ltd. R&D Institute) ;
  • Lee, June-Hyung (Pyunghwa Engineering Consultants Ltd. R&D Institute) ;
  • Park, Hyung-June (Pyunghwa Engineering Consultants Ltd. R&D Institute) ;
  • Park, Ki-Tae (Greenhouse Gas Laboratory, Korea Institute of Energy Research) ;
  • Park, Il-Gun (Pyunghwa Engineering Consultants Ltd. R&D Institute)
  • 투고 : 2020.03.09
  • 심사 : 2020.04.17
  • 발행 : 2020.04.30

초록

본 연구는 L-alanine을 적용한 스크러버의 주류공장 내 CO2 제거효율, 모니터링 데이터 분석/평가 및 에너지 저감효율을 평가하였다. 스크러버의 평균 제거율은 90.45%로 10,000 ppm이상의 고농도 CO2가 유입됨에도 제거효율이 뛰어난 것을 확인하였다. 스크러버 작동 후 작업장 내 CO2는 2,000ppm 이하로 유지하여 약 74% 이상의 이산화탄소 저감 효율을 확인하였다. 또한 소비되는 전력량을 측정한 결과 스크러버 작동 후 230 kWh로 약 7.26%의 에너지가 절감되는 것으로 나타났다. 즉, 본 개발제품을 적용한 결과로 작업장 내 이산화탄소 농도를 외기유입 없이 낮은 농도로 유지함에 따라 근무자의 작업환경을 개선시킬 수 있었으며 에너지 소비량 또한 저감할 수 있었다. 그러므로 식품, 주류공장 내 고농도 CO2 제거 공정으로써 스크러버가 유용할 것으로 기대된다.

This study evaluated CO2 removal efficiency, monitoring data analysis / evaluation efficiency and energy reduction efficiency in the liquor factory by L-alanine applied scrubber. The average removal rate of the scrubber was 90.45%, and it was confirmed that the removal efficiency was excellent above 10,000ppm of inlet CO2 concentration. After the scrubber operation, the CO2 concentration in the workplace was maintained under 2,000ppm(the carbon dioxide reduction efficiency was about 74%). and the energy saving efficiency was calculated to 7.26% by reducing the power consumption. As a result of applying the developed product, it was possible to improve the working environment of workers by reducing the carbon dioxide concentration in the workplace at low concentration without ventilation, and to reduce the energy consumption. Therefore, it is expected that the scrubber will be useful as a high CO2 removal process in food and liquor factories.

키워드

참고문헌

  1. T. P. Hughes, J. T. Kerry, M. Alvarez-Noriega, J. G. Alvarez-Romero, K. D. Anderson, A. H. Baird, T. C. Bridge, "Global warming and recurrent mass bleaching of corals", Nature, Vol.543, No.7645, pp. 373-377, (2017). https://doi.org/10.1038/nature21707
  2. T. R. Anderson, E. Hawkins, P. D. Jones, "$CO_2$, the greenhouse effect and global warming: from the pioneering work of Arrhenius and Callendar to today's Earth System Models", Endeavour, Vol.40, No.3, pp. 178-187, (2016). https://doi.org/10.1016/j.endeavour.2016.07.002
  3. K. Haustein, M. R. Allen, P. M. Forster, F. E. L. Otto, D. M. Mitchell, H. D. Matthews, D. J. Frame, "A real-time global warming index", Scientific reports, Vol.7, No.1, pp. 1-6, (2017). https://doi.org/10.1038/s41598-016-0028-x
  4. Y. Lu, N. Nakicenovic, M. Visbeck, A. S. Stevance, "Policy: five priorities for the UN sustainable development goals", Nature, Vol.520, No.7548, pp. 432-433, (2015). https://doi.org/10.1038/520432a
  5. R. Costanza, L. Fioramonti, I. Kubiszewski, "The UN Sustainable Development Goals and the dynamics of well-being", Frontiers in Ecology and the Environment, Vol.14, No.2, pp. 59-59, (2016). https://doi.org/10.1002/fee.1231
  6. J. O. Kim, J. H. Suh, "A review of climate change adaptation policies applied to landscape planning and design in Korea", Landscape and ecological engineering, Vol.12, No.1, pp. 171-177, (2016). https://doi.org/10.1007/s11355-014-0261-z
  7. W. Kim, J. Yu, "The effect of the penalty system on market prices in the Korea ETS", Carbon Management, Vol.9, No.2, pp. 145-154, (2018). https://doi.org/10.1080/17583004.2018.1440852
  8. Y. Choi, H. S. Lee, "Are emissions trading policies sustainable? A study of the petrochemical industry in Korea", Sustainability, Vol.8, No.11, pp. 1110, (2016). https://doi.org/10.3390/su8111110
  9. F. P. Casanova, A. Bevilacqua, L. Petruzzi, M. Sinigaglia, M. R. Corbo, "Fermentative activity of promising yeasts for cerealbased beverages using $CO_2$ headspace analysis", Czech Journal of Food Sciences, Vol.33, No.1, pp.8-12, (2015).
  10. L. Fradette, S. Lefebvre, J. Carley, "Demonstration results of enzymeaccelerated $CO_2$ capture", Energy Procedia, Vol.114, pp. 1100-1109, (2017). https://doi.org/10.1016/j.egypro.2017.03.1263
  11. D. W. Keith, G. Holmes, D. S. Angelo, K. Heidel, "A process for capturing $CO_2$ from the atmosphere", Joule, Vol.2, No.8, pp. 1573-1594, (2018). https://doi.org/10.1016/j.joule.2018.05.006
  12. P. C. Chen, Y. X. Luo, P. W. Cai, "$CO_2$ Capture Using Monoethanolamine in a Bubble‐Column Scrubber", Chemical Engineering and Technology, Vol.38, No.2, pp. 274-282, (2015). https://doi.org/10.1002/ceat.201400240
  13. A. Singh, Y. Sharma, Y. Wupardrasta, K. Desai, "Selection of amine combination for $CO_2$ capture in a packed bed scrubber", Resource-Efficient Technologies, Vol.2, pp. S165-S170, (2016). https://doi.org/10.1016/j.reffit.2016.11.014
  14. S. Dharmalingam, K. T. Park, J. Y. Lee, I. G. Park, S. K. Jeong, "Catalytic effect of metal oxides on $CO_2$ absorption in an aqueous potassium salt of lysine", Journal of Industrial and Engineering Chemistry, Vol.68, pp. 335-341, (2018). https://doi.org/10.1016/j.jiec.2018.08.004
  15. I. G. Park, Y. S. Park, "Evaluation of $CO_2$ Removal Efficiency in Liquor plant by scrubber", Journal of the Korean Applied Science and Technology, Vol.34, No.4, pp. 986-994, (2017).