DOI QR코드

DOI QR Code

A novel four-unknown integral model for buckling response of FG sandwich plates resting on elastic foundations under various boundary conditions using Galerkin's approach

  • Chikr, Sara Chelahi (Department of Civil and Hydraulic Engineering, Dr Tahar Moulay University, Faculty of Technology) ;
  • Kaci, Abdelhakim (Department of Civil and Hydraulic Engineering, Dr Tahar Moulay University, Faculty of Technology) ;
  • Bousahla, Abdelmoumen Anis (Department of Civil and Environmental Engineering, King Fahd University of Petroleum & Minerals) ;
  • Bourada, Fouad (Material and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology, Civil Engineering Department) ;
  • Tounsi, Abdeldjebbar (Material and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology, Civil Engineering Department) ;
  • Bedia, E.A. Adda (Department of Civil and Environmental Engineering, King Fahd University of Petroleum & Minerals) ;
  • Mahmoud, S.R. (GRC Department, Jeddah Community College, King Abdulaziz University) ;
  • Benrahou, Kouider Halim (Material and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology, Civil Engineering Department) ;
  • Tounsi, Abdelouahed (Material and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology, Civil Engineering Department)
  • Received : 2020.03.11
  • Accepted : 2020.04.24
  • Published : 2020.06.10

Abstract

In this work, the buckling analysis of material sandwich plates based on a two-parameter elastic foundation under various boundary conditions is investigated on the basis of a new theory of refined trigonometric shear deformation. This theory includes indeterminate integral variables and contains only four unknowns in which any shear correction factor not used, with even less than the conventional theory of first shear strain (FSDT). Applying the principle of virtual displacements, the governing equations and boundary conditions are obtained. To solve the buckling problem for different boundary conditions, Galerkin's approach is utilized for symmetric EGM sandwich plates with six different boundary conditions. A detailed numerical study is carried out to examine the influence of plate aspect ratio, elastic foundation coefficients, ratio, side-to-thickness ratio and boundary conditions on the buckling response of FGM sandwich plates. A good agreement between the results obtained and the available solutions of existing shear deformation theories that have a greater number of unknowns proves to demonstrate the precision of the proposed theory.

Keywords

References

  1. Abdelmalek, A., Bouazza, M., Zidour, M. and Benseddiq, N. (2019), "Hygrothermal effects on the free vibration behavior of composite plate using nth-order shear deformation theory: A Micromechanical approach", Iran. J. Sci. Technol. Trans. Mech. Eng., 43, 61-73. https://doi.org/10.1007/s40997-017-0140-y.
  2. Abdou, M.A., Othman, M.I.A., Tantawi, R.S. and Mansour, N.T. (2019), "Exact solutions of generalized thermoelastic medium with double porosity under L-S theory", Indian J. Phys., 1-12. https://doi.org/10.1007/s12648-019-01505-8.
  3. Ahmed, R.A., Fenjan, R.M. and Faleh, N.M. (2019), "Analyzing post-buckling behavior of continuously graded FG nanobeams with geometrical imperfections", Geomech. Eng., 17(2), 175-180. https://doi.org/10.12989/gae.2019.17.2.175.
  4. Akbas, S.D (2017a), "Nonlinear static analysis of functionally graded porous beams under thermal effect", Coupled Syst. Mech., 6(4), 399-415. https://doi.org/10.12989/csm.2017.6.4.399.
  5. Akbas, S.D. (2019a), "Hygro-thermal post-buckling analysis of a functionally graded beam", Coupled Syst. Mech., 8(5), 459-471. https://doi.org/10.12989/csm.2019.8.5.459.
  6. Akbas, S.D. (2019b), "Forced vibration analysis of functionally graded sandwich deep beams", Coupled Syst. Mech., 8(3), 259-271. https://doi.org/10.12989/csm.2019.8.3.259.
  7. Al-Maliki, A.F.H., Faleh, N.M., Abbas, A. and Alasadi, A.A. (2019), "Finite element formulation and vibration of nonlocal refined metal foam beams with symmetric and non-symmetric porosities", Struct. Monit. Maint., 6(2), 147-159. https://doi.org/10.12989/smm.2019.6.2.147.
  8. Alasadi, A.A., Ahmed, R.A. and Faleh, N.M. (2019), "Analyzing nonlinear vibrations of metal foam nanobeams with symmetric and non-symmetric porosities", Adv. Aircraft Spacecraft Sci., 6(4), 273-282. https://doi.org/10.12989/aas.2019.6.4.273.
  9. Amnieh, H.B., Zamzam, M.S. and Kolahchi, R. (2018), "Dynamic analysis of non-homogeneous concrete blocks mixed by SiO2 nanoparticles subjected to blast load experimentally and theoretically", Construct. Build. Mater., 174, 633-644. https://doi.org/10.1016/j.conbuildmat.2018.04.140.
  10. Anderson, T.A. (2003), "A 3-D elasticity solution for a sandwich composite with functionally graded core subjected to transverse loading by a rigid sphere", Compos. Struct., 60(3), 265-274. https://doi.org/10.1016/s0263-8223(03)00013-8.
  11. Arani, A.J. and Kolahchi, R. (2016), "Buckling analysis of embedded concrete columns armed with carbon nanotubes", Comput. Concrete, 17(5), 567-578. https://doi.org/10.12989/cac.2016.17.5.567.
  12. Arbabi, A., Kolahchi, R. and Bidgoli, M.R, (2020), "Experimental study for ZnO nanofibers effect on the smart and mechanical properties of concrete", Smart Struct. Syst., 25(1), 97-104. https://doi.org/10.12989/sss.2020.25.1.097.
  13. Avcar, M. (2019), "Free vibration of imperfect sigmoid and power law functionally graded beams", Steel Compos. Struct., 30(6), 603-615. https://doi.org/10.12989/scs.2019.30.6.603.
  14. Ayat, H., Kellouche, Y., Ghrici, M. and Boukhatem, B. (2018), "Compressive strength prediction of limestone filler concrete using artificial neural networks", Adv. Comput. Des., 3(3), 289-302. https://doi.org/10.12989/acd.2018.3.3.289.
  15. Azmi, M., Kolahchi, R. and Bidgoli, M.R. (2019), "Dynamic analysis of concrete column reinforced with Sio2 nanoparticles subjected to blast load", Adv. Concrete Construct., 7(1), 51-63. https://doi.org/10.12989/acc.2019.7.1.051.
  16. Barati, M.R. and Shahverdi, H. (2020), "Finite element forced vibration analysis of refined shear deformable nanocomposite graphene platelet-reinforced beams", J. Braz. Soc. Mech. Sci. Eng., 42(1), 33. https://doi.org/10.1007/s40430-019-2118-8.
  17. Behera, S. and Kumari, P. (2018), "Free vibration of Levy-type rectangular laminated plates using efficient zig-zag theory", Adv. Comput. Des., 3(3), 213-232. https://doi.org/10.12989/acd.2017.2.3.165.
  18. Behravan Rad, A. (2012), "Static response of 2-D functionally graded circular plate with gradient thickness and elastic foundations to compound loads", Struct. Eng. Mech., 44(2), 139-161. https://doi.org/10.12989/sem.2012.44.2.139.
  19. Belkacem, A., Tahar, H. D., Abderrezak, R., Amine, B.M., Mohamed, Z. and Boussad, A. (2018), "Mechanical buckling analysis of hybrid laminated composite plates under different boundary conditions", Struct. Eng. Mech., 66(6), 761-769. https://doi.org/10.12989/sem.2018.66.6.761.
  20. Bilouei, B.S., Kolahchi, R. and Bidgoli, M.R. (2016), "Buckling of concrete columns retrofitted with nano-fiber reinforced Polymer (NFRP)", Comput. Concrete, 18(5), 1053-1063. https://doi.org/10.12989/cac.2016.18.6.1053.
  21. Das, M., Barut, A., Madenci, E. and Ambur, D.R. (2006), "A triangular plate element for thermo-elastic analysis of sandwich panels with a functionally graded core", Int. J. Numer. Meth. Eng., 68(9), 940-966. https://doi.org/10.1002/nme.1724.
  22. Ebrahimi, F. and Barati, M.R. (2018), "Hygro-thermal vibration analysis of bilayer graphene sheet system via nonlocal strain gradient plate theory", J. Braz. Soc. Mech. Sci. Eng., 40(9), 428. https://doi.org/10.1007/s40430-018-1350-y.
  23. Ebrahimi, F. and Barati, M.R. (2019), "A nonlocal strain gradient mass sensor based on vibrating hygro-thermally affected graphene nanosheets", Iran. J. Sci. Technol. Trans. Mech. Eng., 43, 205-220. https://doi.org/10.1007/s40997-017-0131-z.
  24. Ebrahimi, F., Barati, M.R. and Civalek, O. (2019), "Application of Chebyshev-Ritz method for static stability and vibration analysis of nonlocal microstructure-dependent nanostructures", Eng. Comput., 1-12. https://doi.org/10.1007/s00366-019-00742-z.
  25. Eltaher, M.A. and Mohamed, S.A. (2020), "Buckling and stability analysis of sandwich beams subjected to varying axial loads", Steel Compos. Struct., 34(2), 241-260. https://doi.org/10.12989/scs.2020.34.2.241.
  26. Eltaher, M.A. and Wagih, A. (2020), "Micromechanical modeling of damage in elasto-plastic nanocomposites using unit cell representative volume element and cohesive zone model", Ceramics Int. https://doi.org/10.1016/j.ceramint.2020.01.046.
  27. Fakhar, A. and Kolahchi, R. (2018), "Dynamic buckling of magnetorheological fluid integrated by visco-piezo-GPL reinforced plates", Int. J. Mech. Sci., 144, 788-799. https://doi.org/10.1016/j.ijmecsci.2018.06.036.
  28. Farrokhian, A. and Kolahchi, R. (2020), "Frequency and instability responses in nanocomposite plate assuming different distribution of CNTs", Struct. Eng. Mech., 73(5), 555-563. https://doi.org/10.12989/sem.2020.73.5.555.
  29. Fenjan, R.M., Ahmed, R.A., Alasadi, A.A. and Faleh, N.M. (2019), "Nonlocal strain gradient thermal vibration analysis of double-coupled metal foam plate system with uniform and nonuniform porosities", Coupled Syst. Mech., 8(3), 247-257. https://doi.org/10.12989/csm.2019.8.3.247.
  30. Filipich, C.P. and Rosales, M.B. (2002), "A further study about the behaviour of foundation piles and beams in a Winkler-Pasternak soil", Int. J. Mech. Sci., 44(1), 21-36. https://doi.org/10.1016/s0020-7403(01)00087-x.
  31. Golabchi, H., Kolahchi, R. and Bidgoli, M.R. (2018), "Vibration and instability analysis of pipes reinforced by SiO2 nanoparticles considering agglomeration effects", Comput. Concrete, 21(4), 431-440. https://doi.org/10.12989/cac.2018.21.4.431.
  32. Hadji, L., Zouatnia, N. and Bernard, F. (2019), "An analytical solution for bending and free vibration responses of functionally graded beams with porosities: Effect of the micromechanical models", Struct. Eng. Mech., 69(2), 231-241. https://doi.org/10.12989/sem.2019.69.2.231.
  33. Hajmohammad, M.H., Farrokhian, A. and Kolahchi, R. (2018a), "Smart control and vibration of viscoelastic actuator-multiphase nanocomposite conical shells-sensor considering hygrothermal load based on layerwise theory", Aerosp. Sci. Technol., 78, 260-270. https://doi.org/10.1016/j.ast.2018.04.030.
  34. Hajmohammad, M.H., Kolahchi, R., Zarei, M.S. and Maleki, M. (2018c), "Earthquake induced dynamic deflection of submerged viscoelastic cylindrical shell reinforced by agglomerated CNTs considering thermal and moisture effects", Compos. Struct., 187, 498-508. https://doi.org/10.1016/j.compstruct.2017.12.004.
  35. Hajmohammad, M.H., Kolahchi, R., Zarei, M.S. and Nouri, A.H. (2019), "Dynamic response of auxetic honeycomb plates integrated with agglomerated CNT-reinforced face sheets subjected to blast load based on visco-sinusoidal theory", Int. J. Mech. Sci., 153, 391-401. https://doi.org/10.1016/j.ijmecsci.2019.02.008.
  36. Hajmohammad, M.H., Maleki, M. and Kolahchi, R. (2018b), "Seismic response of underwater concrete pipes conveying fluid covered with nano-fiber reinforced polymer layer", Soil Dyn. Earthq. Eng., 110, 18-27. https://doi.org/10.1016/j.soildyn.2018.04.002.
  37. Hajmohammad, M.H., Zarei, M.S., Nouri, A. and Kolahchi, R. (2017), "Dynamic buckling of sensor/functionally gradedcarbon nanotube-reinforced laminated plates/actuator based on sinusoidal-visco-piezoelasticity theories", J. Sandw. Struct. Mater. https://doi.org/10.1177/1099636217720373.
  38. Hamed, M.A., Mohamed, S.A. and Eltaher, M.A. (2020), "Buckling analysis of sandwich beam rested on elastic foundation and subjected to varying axial in-plane loads", Steel Compos. Struct., 34(1), 75-89. https://doi.org/10.12989/scs.2020.34.1.075.
  39. Hamidi, A., Zidour, M., Bouakkaz, K. and Bensattalah, T. (2018), "Thermal and small-scale effects on vibration of embedded armchair single-walled carbon nanotubes", J. Nano Res., 51, 24-38. https://doi.org/10.4028/www.scientific.net/JNanoR.51.24.
  40. Hieu, D. and Hai, N.Q. (2019), "Free vibration analysis of quintic nonlinear beams using equivalent linearization method with a weighted averaging", J. Appl. Comput. Mech., 5(1), 46-57. https://doi.org/10.22055/jacm.2018.24919.1217.
  41. Hosseini, H. and Kolahchi, R. (2018), "Seismic response of functionally graded-carbon nanotubes-reinforced submerged viscoelastic cylindrical shell in hygrothermal environment", Physica E Low-dimens. Syst. Nanostruct., 102, 101-109. https://doi.org/10.1016/j.physe.2018.04.037.
  42. Jamali, M., Shojaee, T., Mohammadi, B. and Kolahchi, R. (2019), "Cut out effect on nonlinear post-buckling behavior of FGCNTRC micro plate subjected to magnetic field via FSDT", Adv. Nano Res., 7(6), 405-417. https://doi.org/10.12989/anr.2019.7.6.405.
  43. Katariya, P.V., Panda, S.K. and Mahapatra, T.R. (2017), "Prediction of nonlinear eigen frequency of laminated curved sandwich structure using higher-order equivalent single-layer theory", J. Sandw. Struct. Mater., 109963621772842. https://doi.org/10.1177/1099636217728420.
  44. Keshtegar, B., Bagheri, M., Meng, D., Kolahchi, R. and Trung, N.T. (2020a), "Fuzzy reliability analysis of nanocomposite ZnO beams using hybrid analytical-intelligent method", Eng. Comput., 1-16. https://doi.org/10.1007/s00366-020-00965-5.
  45. Keshtegar, B., Tabatabaei, J., Kolahchi, R. and Trung, N.T. (2020b), "Dynamic stress response in the nanocomposite concrete pipes with internal fluid under the ground motion load", Adv. Concrete Construct., 9(3), 327-335. https://doi.org/10.12989/acc.2020.9.3.327.
  46. Koizumi M. (1997), "FGM activities in Japan", Compos. Part B Eng., 28(1-2), 1-4. https://doi.org/10.1016/S1359-8368(96)00016-9.
  47. Kolahchi, R. (2017), "A comparative study on the bending, vibration and buckling of viscoelastic sandwich nano-plates based on different nonlocal theories using DC, HDQ and DQ methods", Aerosp. Sci. Technol., 66, 235-248. https://doi.org/10.1016/j.ast.2017.03.016.
  48. Kolahchi, R. and Cheraghbak, A. (2017), "Agglomeration effects on the dynamic buckling of viscoelastic microplates reinforced with SWCNTs using Bolotin method", Nonlin. Dyn., 90, 479-492. https://doi.org/10.1007/s11071-017-3676-x.
  49. Kolahchi, R., Hosseini, H., Fakhar, M.H., Taherifar, R. and Mahmoudi, M. (2019), "A numerical method for magnetohygro-thermal postbuckling analysis of defective quadrilateral graphene sheets using higher order nonlocal strain gradient theory with different movable boundary conditions", Comput. Math. Appl., 78(6), 2018-2034. https://doi.org/10.1016/j.camwa.2019.03.042.
  50. Kolahchi, R., Keshtegar, B. and Fakhar, M.H. (2020a), "Optimization of dynamic buckling for sandwich nanocomposite plates with sensor and actuator layer based on sinusoidal-visco-piezoelasticity theories using Grey Wolf algorithm", J. Sandw. Struct. Mater., 22(1). https://doi.org/10.1177/1099636217731071.
  51. Kolahchi, R. and Moniri Bidgoli, A.M. (2016), "Size-dependent sinusoidal beam model for dynamic instability of single-walled carbon nanotubes", Appl. Math. Mech. Engl. Ed., 37, 265-274. https://doi.org/10.1007/s10483-016-2030-8.
  52. Kolahchi, R., Zarei, M.S., Hajmohammad, M.H. and Nouri, A. (2017b), "Wave propagation of embedded viscoelastic FGCNT-reinforced sandwich plates integrated with sensor and actuator based on refined zigzag theory", Int. J. Mech. Sci., 130, 534-545. https://doi.org/10.1016/j.ijmecsci.2017.06.039.
  53. Kolahchi, R., Zarei, M.S., Hajmohammad, M.H. and Oskouei, A.N. (2017a), "Visco-nonlocal-refined Zigzag theories for dynamic buckling of laminated nanoplates using differential cubature-Bolotin methods", Thin-Walled Struct., 113, 162-169. https://doi.org/10.1016/j.tws.2017.01.016.
  54. Kolahchi, R., Zhu, S.P., Keshtegar, B. and Trung, N.T. (2020b), "Dynamic buckling optimization of laminated aircraft conical shells with hybrid nanocomposite martial", Aerosp. Sci. Technol., 98, 105656. https://doi.org/10.1016/j.ast.2019.105656.
  55. Kolahchi, R., Hosseini, H. and Esmailpour, M. (2016b), "Differential cubature and quadrature-Bolotin methods for dynamic stability of embedded piezoelectric nanoplates based on visco-nonlocal-piezoelasticity theories", Compos. Struct., 157, 174-186. https://doi.org/10.1016/j.compstruct.2016.08.032.
  56. Kolahchi, R., Safari, M. and Esmailpour, M. (2016c), "Dynamic stability analysis of temperature-dependent functionally graded CNT-reinforced visco-plates resting on orthotropic elastomeric medium", Compos. Struct., 150, 255-265. https://doi.org/10.1016/j.compstruct.2016.05.023.
  57. Kolahchi, R., Safari, M. and Esmailpour, M. (2016a), "Dynamic stability analysis of temperature-dependent functionally graded CNT-reinforced visco-plates resting on orthotropic elastomeric medium", Compos. Struct., 150, 255-265. https://doi.org/10.1016/j.ijmecsci.2017.06.039.
  58. Li, Z.M. and Yang, D.Q. (2016), "Thermal postbuckling analysis of anisotropic laminated beams with tubular cross-section based on higher-order theory", Ocean Eng., 115, 93-106. https://doi.org/10.1016/j.oceaneng.2016.02.017.
  59. Madani, H., Hosseini, H. and Shokravi, M. (2016), "Differential cubature method for vibration analysis of embedded FG-CNTreinforced piezoelectric cylindrical shells subjected to uniform and non-uniform temperature distributions", Steel Compos. Struct., 22(4), 889-913. https://doi.org/10.12989/scs.2016.22.4.889.
  60. Malikan, M. (2019), "On the buckling response of axially pressurized nanotubes based on a novel nonlocal beam theory", J. Appl. Comput. Mech., 5(1), 103-112. https://doi.org/10.22055/jacm.2018.25507.1274.
  61. Matsunaga, H. (2000), "Vibration and stability of thick plates on elastic foundations", J. Eng. Mech., 126(1), 27-34. https://doi.org/10.1061/(ASCE)0733-9399(2000)126:1(27).
  62. Matsunaga, H. (2008), "Free vibration and stability of functionally graded plates according to a 2-D higher-order deformation theory", Compos. Struct., 82(4), 499-512. https://doi.org/10.1016/j.compstruct.2007.01.030.
  63. Motezaker, M. and Eyvazian, A. (2020a), "Post-buckling analysis of Mindlin cut out-plate reinforced by FG-CNTs", Steel Compos. Struct., 34(2), 289-297. https://doi.org/10.12989/scs.2020.34.2.289.
  64. Motezaker, M. and Eyvazian, A. (2020b), "Buckling load optimization of beam reinforced by nanoparticles", Struct. Eng. Mech., 73(5), 481-486. https://doi.org/10.12989/sem.2020.73.5.481.
  65. Motezaker, M. and Kolahchi, R. (2017a), "Seismic response of concrete columns with nanofiber reinforced polymer layer", Comput. Concrete, 20(3), 361-368. https://doi.org/10.12989/cac.2017.20.3.361.
  66. Motezaker, M. and Kolahchi, R. (2017b), "Seismic response of SiO2 nanoparticles-reinforced concrete pipes based on DQ and newmark methods", Comput. Concrete, 19(6), 745-753. https://doi.org/10.12989/cac.2017.19.6.745.
  67. Motezaker, M., Jamali, M. and Kolahchi, R. (2020), "Application of differential cubature method for nonlocal vibration, buckling and bending response of annular nanoplates integrated by piezoelectric layers based on surface-higher order nonlocalpiezoelasticity theory", J. Comput. Appl. Math., 369, 112625. https://doi.org/10.1016/j.cam.2019.112625.
  68. Neves, A.M.A., Ferreira, A.J.M., Carrera, E., Cinefra, M., Jorge, R.M.N. and Soares, C.M.M. (2012e), "Buckling analysis of sandwich plates with functionally graded skins using a new quasi-3D hyperbolic sine shear deformation theory and collocation with radial basis functions", ZAMM J. Appl. Math. Mech., 92(9), 749-766. https://doi.org/10.1002/zamm.201100186.
  69. Neves, A.M.A., Ferreira, A.J.M., Carrera, E., Cinefra, M., Jorge, R.M.N. and Soares, C.M.M. (2012c), "Static analysis of functionally graded sandwich plates according to a hyperbolic theory considering Zig-Zag and warping effects", Adv. Eng. Softw., 52, 30-43. https://doi.org/10.1016/j.advengsoft.2012.05.005.
  70. Neves, A.M.A., Ferreira, A.J.M., Carrera, E., Cinefra, M., Jorge, R.M.N. and Soares, C.M.M. (2012b), "Buckling analysis of sandwich plates with functionally graded skins using a new quasi-3D hyperbolic sine shear deformation theory and collocation with radial basis functions", ZAMM J. Appl. Math. Mech., 92(9), 749-766. https://doi.org/10.1002/zamm.201100186.
  71. Neves, A.M.A., Ferreira, A.J.M., Carrera, E., Cinefra, M., Roque, C.M.C., Jorge, R.M.N. and Soares, C.M.M. (2012d), "A quasi- 3D hyperbolic shear deformation theory for the static and free vibration analysis of functionally graded plates", Compos. Struct., 94(5), 1814-1825. https://doi.org/10.1016/j.compstruct.2011.12.005.
  72. Neves, A.M.A., Ferreira, A.J.M., Carrera, E., Roque, C.M.C., Cinefra, M., Jorge, R.M.N. and Soares, C.M.M. (2012a), "A quasi-3D sinusoidal shear deformation theory for the static and free vibration analysis of functionally graded plates", Compos. Part B Eng., 43(2), 711-725. https://doi.org/10.1016/j.compositesb.2011.08.009.
  73. Omurtag, M.H., Ozutok, A., Akoz, A.Y. and Ozcelikors, Y. (1997), "Free vibration analysis of kirchhoff plates resting on elastic foundation by mixed finite element formulation based on gateaux differential", Int. J. Numer. Meth. Eng., 40(2), 295-317. https://doi.org/10.1002/(sici)1097-0207(19970130)40:2<295::aid-nme66>3.0.co;2-2.
  74. Othman, M.I.A., Abouelregal, A.E. and Said, S.M. (2019), "The effect of variable thermal conductivity on an infinite fiberreinforced thick plate under initial stress", J. Mech. Mater. Struct., 14(2), 277-293. https://doi.org/10.2140/jomms.2019.14.277.
  75. Panjehpour, M., Loh, E.W.K. and Deepak, TJ. (2018), "Structural Insulated Panels: State-of-the-Art", Trends Civ. Eng. Architect., 3(1) 336-340. https://doi.org/10.32474/TCEIA.2018.03.000151.
  76. Safa, A., Hadji, L., Bourada, M. and Zouatnia, N. (2019), "Thermal vibration analysis of FGM beams using an efficient shear deformation beam theory", Earthq. Struct., 17(3), 329-336. https://doi.org/10.12989/eas.2019.17.3.329.
  77. Sahouane, A., Hadji, L. and Bourada, M. (2019), "Numerical analysis for free vibration of functionally graded beams using an original HSDBT", Earthq. Struct., 17(1), 31-37. https://doi.org/10.12989/eas.2019.17.1.031.
  78. Sedighi, H.M. and Shirazi, K.H. (2012), "A new approach to analytical solution of cantilever beam vibration with nonlinear boundary condition", J. Comput. Nonlin. Dyn., 7(3), 034502. https://doi.org/10.1115/1.4005924.
  79. Sedighi, H.M., Keivani, M. and Abadyan, M. (2015), "Modified continuum model for stability analysis of asymmetric FGM double-sided NEMS: Corrections due to finite conductivity, surface energy and nonlocal effect", Compos. Part B Eng., 83, 117-133. https://doi.org/10.1016/j.compositesb.2015.08.029.
  80. Sedighi, H.M., Shirazi, K.H. and Attarzadeh, M.A. (2013), "A study on the quintic nonlinear beam vibrations using asymptotic approximate approaches", Acta Astronautica, 91, 245-250. https://doi.org/10.1016/j.actaastro.2013.06.018.
  81. Selmi, A. (2019), "Effectiveness of SWNT in reducing the crack effect on the dynamic behavior of aluminium alloy", Adv. Nano Res., 7(5), 365-377. https://doi.org/10.12989/anr.2019.7.5.365.
  82. Shen, H.S. and Yang, D.Q. (2014), "Nonlinear vibration of anisotropic laminated cylindrical shells with piezoelectric fiber reinforced composite actuators", Ocean Eng., 80, 36-49. https://doi.org/10.1016/j.oceaneng.2014.01.016.
  83. Shodja, H., Haftbaradaran, H. and Asghari, M. (2007), "A thermoelasticity solution of sandwich structures with functionally graded coating", Compos. Sci. Technol., 67(6), 1073-1080. https://doi.org/10.1016/j.compscitech.2006.06.001.
  84. Sobhy, M. (2013), "Buckling and free vibration of exponentially graded sandwich plates resting on elastic foundations under various boundary conditions", Compos. Struct, 99, 76-87. https://doi.org/10.1016/j.compstruct.2012.11.018.
  85. Timesli, A. (2020), "An efficient approach for prediction of the nonlocal critical buckling load of double-walled carbon nanotubes using the nonlocal Donnell shell theory", SN Appl. Sci., 2, 407. https://doi.org/10.1007/s42452-020-2182-9.
  86. Wang, Z.X. and Shen, H.S. (2013), "Nonlinear dynamic response of sandwich plates with FGM face sheets resting on elastic foundations in thermal environments", Ocean Eng., 57, 99-110. https://doi.org/10.1016/j.oceaneng.2012.09.004.
  87. Xiang, S., Jin, Y., Bi, Z., Jiang, S. and Yang, M. (2011). "A n-order shear deformation theory for free vibration of functionally graded and composite sandwich plates", Compos. Struct., 93(11), 2826-2832. https://doi.org/10.1016/j.compstruct.2011.05.022.
  88. Yaghoobi, H. and Yaghoobi, P. (2013), "Buckling analysis of sandwich plates with FGM face sheets resting on elastic foundation with various boundary conditions: an analytical approach", Meccanica, 48(8), 2019-2035. https://doi.org/10.1007/s11012-013-9720-0.
  89. Zamanian, M., Kolahchi, R. and Bidgoli, M.R. (2017), "Agglomeration effects on the buckling behaviour of embedded concrete columns reinforced with SiO2 nano-particles", Wind Struct., 24(1), 43-57. https://doi.org/10.12989/was.2017.24.1.043.
  90. Zarei, M.S., Kolahchi, R., Hajmohammad, M.H. and Maleki, M. (2017), "Seismic response of underwater fluid-conveying concrete pipes reinforced with SiO2 nanoparticles and fiber reinforced polymer (FRP) layer", Soil Dyn. Earthq. Eng., 103, 76-85. https://doi.org/10.1016/j.soildyn.2017.09.009.
  91. Zenkour, A.M. (2005), "A comprehensive analysis of functionally graded sandwich plates: Part 2-Buckling and free vibration", Int. J. Solids Struct., 42(18-19), 5243-5258. https://doi.org/10.1016/j.ijsolstr.2005.02.016.
  92. Zenkour, A.M. and Alghamdi, N.A. (2008), "Thermoelastic bending analysis of functionally graded sandwich plates", J. Mater. Sci., 43(8), 2574-2589. https://doi.org/10.1007/s10853-008-2476-6.
  93. Zenkour, A.M. and Sobhy, M. (2010), "Thermal buckling of various types of FGM sandwich plates", Compos. Struct., 93(1), 93-102. https://doi.org/10.1016/j.compstruct.2010.06.012.
  94. Zhao, X., Lee, Y.Y. and Liew, K.M. (2009), "Mechanical and thermal buckling analysis of functionally graded plates", Compos. Struct., 90(2), 161-171. https://doi.org/10.1016/j.compstruct.2009.03.005.
  95. Zhou, D., Cheung, Y.K., Lo, S.H. and Au, F.T.K. (2004), "Threedimensional vibration analysis of rectangular thick plates on Pasternak foundation", Int. J. Numer. Meth. Eng., 59(10), 1313-334. https://doi.org/10.1002/nme.915.
  96. Zouatnia, N. and Hadji, L. (2019), "Effect of the micromechanical models on the bending of FGM beam using a new hyperbolic shear deformation theory", Earthq. Struct., 16(2), 177-183. https://doi.org/10.12989/eas.2019.16.2.177.

Cited by

  1. Nonlinear Static Bending and Free Vibration Analysis of Bidirectional Functionally Graded Material Plates vol.2020, 2020, https://doi.org/10.1155/2020/8831366
  2. Analysis of Rotary Vibration of Rigid Friction Pipe Pile in Unsaturated Soil vol.2020, 2020, https://doi.org/10.1155/2020/2807574
  3. Free Vibration and Static Bending Analysis of Piezoelectric Functionally Graded Material Plates Resting on One Area of Two-Parameter Elastic Foundation vol.2020, 2020, https://doi.org/10.1155/2020/9236538
  4. Experimental Validation of Role of Cut-Out Parameters on Modal Responses of Laminated Composite - A Coupled FE Approach vol.12, pp.6, 2020, https://doi.org/10.1142/s1758825120500684
  5. Multiphysical theoretical prediction and experimental verification of vibroacoustic responses of fruit fiber‐reinforced polymeric composite vol.41, pp.11, 2020, https://doi.org/10.1002/pc.25724
  6. Predictions of the maximum plate end stresses of imperfect FRP strengthened RC beams: study and analysis vol.9, pp.4, 2020, https://doi.org/10.12989/amr.2020.9.4.265
  7. Effect of porosity distribution rate for bending analysis of imperfect FGM plates resting on Winkler-Pasternak foundations under various boundary conditions vol.9, pp.6, 2020, https://doi.org/10.12989/csm.2020.9.6.575
  8. The Third-Order Shear Deformation Theory for Modeling the Static Bending and Dynamic Responses of Piezoelectric Bidirectional Functionally Graded Plates vol.2021, 2020, https://doi.org/10.1155/2021/5520240
  9. Free Vibration Investigations of Rotating FG Beams Resting on Elastic Foundation with Initial Geometrical Imperfection in Thermal Environments vol.2021, 2020, https://doi.org/10.1155/2021/5533920
  10. A Refined Model for Analysis of Beams on Two-Parameter Foundations by Iterative Method vol.2021, 2021, https://doi.org/10.1155/2021/5562212
  11. Size dependent vibration of embedded functionally graded nanoplate in hygrothermal environment by Rayleigh-Ritz method vol.10, pp.1, 2020, https://doi.org/10.12989/anr.2021.10.1.025
  12. Numerical and experimental investigation for monitoring and prediction of performance in the soft actuator vol.77, pp.2, 2021, https://doi.org/10.12989/sem.2021.77.2.167
  13. Dynamic stability analysis of a rotary GPLRC disk surrounded by viscoelastic foundation vol.24, pp.3, 2020, https://doi.org/10.12989/gae.2021.24.3.267
  14. Orthotropic magneto-thermoelastic solid with higher order dual-phase-lag model in frequency domain vol.77, pp.3, 2020, https://doi.org/10.12989/sem.2021.77.3.315
  15. Geometrically nonlinear thermo-mechanical analysis of graphene-reinforced moving polymer nanoplates vol.10, pp.2, 2020, https://doi.org/10.12989/anr.2021.10.2.151
  16. Frequency characteristics and sensitivity analysis of a size-dependent laminated nanoshell vol.10, pp.2, 2020, https://doi.org/10.12989/anr.2021.10.2.175
  17. Vibration analysis of porous FGM plate resting on elastic foundations: Effect of the distribution shape of porosity vol.10, pp.1, 2020, https://doi.org/10.12989/csm.2021.10.1.061
  18. Elastic wave phenomenon of nanobeams including thickness stretching effect vol.10, pp.3, 2020, https://doi.org/10.12989/anr.2021.10.3.271
  19. Nonlocal free vibration analysis of porous FG nanobeams using hyperbolic shear deformation beam theory vol.10, pp.3, 2020, https://doi.org/10.12989/anr.2021.10.3.281
  20. A five-variable refined plate theory for thermal buckling analysis of composite plates vol.3, pp.2, 2020, https://doi.org/10.12989/cme.2021.3.2.135
  21. Mechanical analysis of bi-functionally graded sandwich nanobeams vol.11, pp.1, 2020, https://doi.org/10.12989/anr.2021.11.1.055
  22. A nonlocal quasi-3D theory for thermal free vibration analysis of functionally graded material nanoplates resting on elastic foundation vol.26, 2021, https://doi.org/10.1016/j.csite.2021.101170
  23. Dispersion of waves characteristics of laminated composite nanoplate vol.40, pp.3, 2020, https://doi.org/10.12989/scs.2021.40.3.355
  24. Vibration characteristics of microplates with GNPs-reinforced epoxy core bonded to piezoelectric-reinforced CNTs patches vol.11, pp.2, 2020, https://doi.org/10.12989/anr.2021.11.2.115
  25. On the reduction of stress concentrations in thick-walled hollow spheres under an arbitrary uniform axial symmetric outer traction vol.194, pp.no.pb, 2020, https://doi.org/10.1016/j.ijpvp.2021.104545