References
- Abbas, I. and Marin, M. (2017), "Analytical solution of thermoelastic interaction in a half-space by pulsed laser heating", Physica E-Low-Dimen. Syst. Nanostruct., 87, 254-260. https://doi.org/10.1016/j.physe.2016.10.048.
- Abbas, I.A. (2014), "Three-phase lag model on thermoelastic interaction in an unbounded fiber-reinforced anisotropic medium with a cylindrical cavity", J. Comput. Theor. Nanosci., 11(4), 987-992. https://doi.org/10.1166/jctn.2014.3454
- Abbas, I.A. (2014a), "Eigenvalue approach for an unbounded medium with a spherical cavity based upon two-temperature generalized thermoelastic theory", J. Mech. Sci. Technol., 28(10), 4193-4198. https://doi.org/10.1007/s12206-014-0932-6.
- Abbas, I.A. (2014b), "Nonlinear transient thermal stress analysis of thick-walled FGM cylinder with temperature-dependent material properties", Meccanica, 49(7), 1697-1708. https://doi.org/10.1007/s11012-014-9948-3.
- Abbas, I.A. (2016), "Free vibration of a thermoelastic hollow cylinder under two-temperature generalized thermoelastic theory", Mech. Based Des. Struct. Machines, 45(3), 395-405. https://doi.org/10.1080/15397734.2016.1231065.
- Abbas, I.A. and Othman, M.I.A. (2012), "Generalized thermoelastic interaction in a fiber-reinforced anisotropic halfspace under hydrostatic initial stress", J. Vib. Control, 18(2), 175-182. https://doi.org/10.1177%2F1077546311402529. https://doi.org/10.1177/1077546311402529
- Abbas, I.A. and Youssef, H.M. (2009), "Finite element analysis of two-temperature generalized magneto thermoelasticity", Arch. Appl. Mech., 79, 917-925. https://doi.org/10.1007/s00419-008-0259-9.
- Abbas, I.A. and Youssef, H.M. (2012), "A nonlinear generalized thermoelasticity model of temperature-dependent materials using finite element method", Int. J. Thermophys., 33(7), 1302-1313. https://doi.org/10.1007/s10765-012-1272-3.
- Abbas, I.A. and Youssef, H.M. (2013), "Two-temperature generalized thermoelasticity under ramp-type heating by finite element method" Meccanica, 48(2), 331-339. https://doi.org/10.1007/s11012-012-9604-8.
- Abbas, I.A. and Zenkour, A.M. (2014), "Two-temperature generalized thermoelastic interaction in an infinite fiberreinforced anisotropic plate containing a circular cavity with two relaxation times", J. Comput. Theor. Nanosci., 11 (1), 1-7. https://doi.org/10.1166/jctn.2014.3309.
- Ajri, M., Fakhrabadi, M.M.S. and Rastgoo, A. (2018), "Analytic solution for nonlinear dynamic behavior of viscoelastic nanoplates modified by consistent couple stress theory", Lat. Amer. J. Solids Struct., 15(9), e113. https://doi.org/10.1590/1679-78254918.
- Arif, S.M., Biwi, M. and Jahangir, A. (2018), "Solution of algebraic lyapunov equation on positive-definite hermitian matrices by using extended Hamiltonian algorithm", Comput. Mater. Continua, 54, 181-195.
- Chen, W. and Li, X. (2014), "A new modified couple stress theory for anisotropic elasticity and microscale laminated Kirchhoff plate model", Arch. Appl. Mech., 84(3), 323-341. https://doi.org/10.1007/s00419-013-0802-1.
- Cosserat, E. and Cosserat, F. (1909), Theory of Deformable Bodies, Hermann et Fils, Paris, France.
- Ezzat, M. and AI-Bary, A. (2016), "Magneto-thermoelectric viscoelastic materials with memory dependent derivatives involving two temperature", Int. J. Appl. Electromag. Mech., 50(4), 549-567. https://doi.org/10.3233/JAE-150131.
- Fahsi, A., Tounsi, A., Hebali, H., Chikh, A., Adda Bedia, E.A. and Mahmoud, S.R. (2017), "A four variable refined nth-order shear deformation theory for mechanical and thermal buckling analysis of functionally graded plates", Geomech. Eng., 13(3), 385-410. https://doi.org/10.12989/gae.2017.13.3.385.
- Farokhi, H. and Ghayesh, M.H. (2015), "Nonlinear dynamical behaviour of geometrically imperfect microplates based on modified couple stress theory", Int. J. Mech. Sci., 90, 133-144. https://doi.org/10.1016/j.ijmecsci.2014.11.002.
- Ghasemi, A.R. and Mohandes, M. (2016), "Size-dependent bending of geometrically nonlinear of micro-laminated composite beam based on modified couple stress theory", Mech. Adv. Compos. Struct., 3, 53-62. https://dx.doi.org/10.22075/macs.2016.434.
- Hadjesfandiari, A.R. and Dargush, G.F. (2011), "Couple stress theory for solids", Int. J. Solids Struct., 48(18), 2496-2510. https://doi.org/10.1016/j.ijsolstr.2011.05.002.
- Hassan, M., Marin M., Ellahi, R. and Alamri, S.Z. (2018), "Exploration of convective heat transfer and flow characteristics synthesis by Cu-Ag/water hybrid-nanofluids", Heat Transfer Res., 49(18), 1837-1848. https://doi.org/10.1615/HeatTransRes.2018025569.
- He, L., Lou, J., Zhang, E., Wang, Y. and Bai Y. (2015), "A size-dependent four variable refined plate model for functionally graded microplates based on modified couple stress theory", Compos. Struct., 130, 107-115. https://doi.org/10.1016/j.compstruct.2015.04.033.
- Hendou, R.H. and Mohammadi, A.K. (2014), "Transient analysis of nonlinear Euler-Bernoulli micro-beam with thermoelastic damping, via nonlinear normal modes", J. Sound Vib., 333(23), 6224-6236. https://doi.org/10.1016/j.jsv.2014.07.002.
- Homayounfard, M., Daneshmehr, A. and Salari, A. (2018), "A finite element formulation for crack problem in couple stress elasticity", Int. J. Appl. Mech., 10(2), 1850018. https://doi.org/10.1142/S1758825118500187.
- Honig, G. and Hirdes, U. (1984), "A method for the numerical inversion of the Laplace transform", J. Comput. Appl. Math., 10(1), 113-132. https://doi.org/10.1016/0377-0427(84)90075-X
- Jung, W.Y., Park, W.T. and Han, S.C. (2014), "Bending and vibration analysis of S-FGM microplates embedded in Pasternak elastic medium using the modified couple stress theory", Int. J. Mech. Sci., 87, 150-162. https://doi.org/10.1016/j.ijmecsci.2014.05.025.
- Kahrobaiyan, M.H., Asghari, M. and Ahmadian, M.T. (2014), "A Timoshenko beam element based on the modified couple stress theory", Int. J. Mech. Sci., 79, 75-83. https://doi.org/10.1016/j.ijmecsci.2013.11.014.
- Ke, L.L., Wang, Y.S. and Wang, Z.D. (2011), "Thermal effect on free vibration and buckling of size-dependent microbeams", Physica E: Low-dimen. Syst. Nanostruct., 43(7), 1387-1393. https://doi.org/10.1016/j.physe.2011.03.009.
- Khorshidi, K. and Fallah, A. (2017), "Free vibration analysis of size-dependent, functionally graded, rectangular nano/microplates based on modified nonlinear couple stress shear deformation plate theories", Mech. Adv. Compos. Struct., 4, 127-137. https://doi.org/10.22075/macs.2017.1800.1094.
- Koiter, W.T. (1964), "Couple stresses in the theory of elasticity, I and II", Philosoph. Trans. Royal Soc. London B, 67, 17-29.
- Kumar, R. and Devi, S. (2019), "Resonance of nanoscale beam due to various sources in modified couple stress thermoelastic diffusion with phase lags", Mech. Mech. Eng., 23, 36-49. https://doi.org/10.2478/mme-2019-0006.
- Kumar, R., Sharma, N. and Lata, P. (2016), "Thermomechanical interactions due to inclined load in transversely isotropic magnatothermoelastic medium with and without energy dissipation with two temperatures and rotation", J. Solid Mech., 8(4), 840-858.
- Lata, P. (2018a), "Reflection and refraction of plane waves in layered nonlocal elastic and anisotropic thermoelastic medium", Struct. Eng. Mech., 66(1), 113-124. https://doi.org/10.12989/sem.2018.66.1.113.
- Lata, P. (2018b), "Effect of energy dissipation on plane waves in sandwiched layered thermoelastic medium", Steel Compos. Struct., 27(4), 439-451. https://doi.org/10.12989/scs.2018.27.4.439.
- Lata, P. and Kaur, H. (2019a), "Deformation in transversely isotropic thermoelastic medium using new modified couple stress theory in frequency domain", Geomech. Eng., 19(5), 369-381. https://doi.org/10.12989/gae.2019.19.5.369.
- Lata, P. and Kaur, H. (2019), "Axisymmetric deformation in transversely isotropic thermoelastic medium using new modified couple stress theory", Coupled Syst. Mech., 8(6), 501-522. https://doi.org/10.12989/csm.2019.8.6.501.
- Lata, P. and Kaur, I. (2019), "Transversely isotropic thick plate with two temperature and GN type-III in frequency domain", Coupled Syst. Mech., 8(1), 55-70. http://doi.org/10.12989/csm.2019.8.1.055.
- Lou, J., He, L. and Du, J. (2015), "A unified higher order plate the-ory for functionally graded microplates based on the modified couple stress theory", Compos. Struct., 133, 1036-1047. https://doi.org/10.1016/j.compstruct.2015.08.009.
- Marin, M. (2009), "On the minimum principle for dipolar materials with stretch", Nonlin. Anal. RWA, 10(3), 1572-1578. https://doi.org/10.1016/j.nonrwa.2008.02.001
- Marin, M. (2010), "Some estimates on vibrations in thermoelasticity of dipolar bodies", J. Vib. Control, 16(1), 33-47. https://doi.org/10.1177%2F1077546309103419. https://doi.org/10.1177/1077546309103419
- Marin, M. (1994), "The Lagrange identity method in thermoelasticity of bodies with microstructure", Int. J. Eng. Sci., 32(8), 1229-1240. https://doi.org/10.1016/0020-7225(94)90034-5.
- Marin, M. and Nicaise, S. (2016), "Existence and stability results for thermoelastic dipolar bodies with double porosity", Continuum Mech. Thermodyn., 28(6), 1645-1657. https://doi.org/10.1007/s00161-016-0503-4.
- Marin, M., Craciun, E.M. and Pop, N. (2016), "Considerations on mixed initial-boundary value problems for micropolar porous bodies", Dyn. Syst. Appl., 25 (1-2), 175-196.
- Marin, M., Ellahi, R. and Chirila, A. (2017), "On solutions of Saint-Venant's problem for elastic dipolar bodies with voids", Carpathian J. Math., 33(2), 219-232. https://doi.org/10.37193/CJM.2017.02.09
- Marin, M., Vlase, S., Ellahi, R. and Bhatti, M.M. (2019), "On the partition of energies for the backward in time problem of thermoelastic materials with a dipolar structure", Symmetry, 11(7), 1-16. https://doi.org/10.3390/sym11070863.
- Mohammadimehr, M. and Mohandes, M. (2015), "The effect of modified couple stress theory on buckling and vibration analysis of functionally graded double-layer Boron Nitride piezoelectric plate based on CPT", J. Solid Mech., 7(3), 281-298.
- Othman, M.I.A. and Marin, M. (2017), "Effect of thermal loading due to laser pulse on thermoelastic porous medium under G-N theory", Results Phys., 7, 3863-3872. https://doi.org/10.1016/j.rinp.2017.10.012.
- Othman, M.I.A., Atwa, S.Y., Jahangir, A. and Khan, A. (2013), "Generalized magneto-thermo-microstretch elastic solid under gravitational effect with energy dissipation", Multidisciplin. Model. Mater. Struct., 9(2), 145-176. https://doi.org/10.1108/MMMS-01-2013-0005.
- Press W.H., Teukolsky S.A., Vellerling W.T. and Flannery B.P. (1986), Numerical Recipe, Cambridge University Press.
- Salamat-talab, M., Nateghi, A. and Torabi, J. (2012), "Static and dynamic analysis of third-order shear deformation FG micro beam based on modified couple stress theory", Int. J. Mech. Sci., 57, 63-73. https://doi.org/10.1016/j.ijmecsci.2012.02.004.
- Shaat, M., Mahmoud, F.F., Gao, X.L. and Faheem, A.F. (2014), "Size-dependent bending analysis of Kirchhoff nano-plates based on a modified couple-stress theory including surface effect", Int. J. Mech. Sci., 79, 31-37. https://doi.org/10.1016/j.ijmecsci.2013.11.022.
- Sharma, N., Kumar, R. and Lata, P. (2015), "Disturbance due to inclined load in transversely isotropic thermoelastic medium with two temperatures and without energy dissipation", Mater. Phys. Mech., 22, 107-117.
- Sherief, H.H. and Saleh H. (2005), "A half-space problem in the theory of generalized thermoelastic diffusion", Int. J. Solids Struct., 42, 4484-4493. https://doi.org/10.1016/0377-0427(84)90075-X.
- Thai, H.T. and Kim, S.E. (2013), "A size-dependent functionally graded Reddy plate model based on a modified couple stress theory", Compos. Part B Eng., 45(1), 1636-1645. https://doi.org/10.1016/j.compositesb.2012.09.065.
- Wang, Y.G., Lin, W.H. and Liu, N. (2013), "Large amplitude free vibration of size-dependent circular microplates based on the modified couple stress theory", Int. J. Mech. Sci., 71, 51-57. https://doi.org/10.1016/j.ijmecsci.2013.03.008.
- Zhang, B., He, Y., Liu, D., Shen, L. and Lei, J. (2015), "An efficient size-dependent plate theory for bending, buck-ling and free vibration analyses of functionally graded microplates resting on elastic foundation", Appl. Math. Modell., 39(13), 3814-3845. https://doi.org/10.1016/j.apm.2014.12.001.
Cited by
- Time Harmonic interactions in the axisymmetric behaviour of transversely isotropic thermoelastic solid using New M-CST vol.9, pp.6, 2020, https://doi.org/10.12989/csm.2020.9.6.521
- The Fractional Strain Influence on a Solid Sphere under Hyperbolic Two-Temperature Generalized Thermoelasticity Theory by Using Diagonalization Method vol.2021, 2020, https://doi.org/10.1155/2021/6644133