DOI QR코드

DOI QR Code

Effect of two temperature on isotropic modified couple stress thermoelastic medium with and without energy dissipation

  • Lata, Parveen (Department of Basic and Applied Sciences, Punjabi University) ;
  • Kaur, Harpreet (Department of Basic and Applied Sciences, Punjabi University)
  • Received : 2020.03.19
  • Accepted : 2020.04.20
  • Published : 2020.06.10

Abstract

The objective of this paper is to study the deformation in a homogeneous isotropic modified couple stress thermoelastic medium with and without energy dissipation and with two temperatures due to thermal source and mechanical force. Laplace and Fourier transform techniques are applied to obtain the solutions of the governing equations. The displacement components, stress components, conductive temperature and couple stress are obtained in the transformed domain. Isothermal boundary and insulated boundary conditions are used to investigate the problem.The effect of two temperature and GN theory of type-II and type-III has been depicted graphically on the various components. Numerical inversion technique has been used to obtain the solutions in the physical domain. Some special cases of interest are also deduced.

Keywords

References

  1. Abbas, I. and Marin, M. (2017), "Analytical solution of thermoelastic interaction in a half-space by pulsed laser heating", Physica E-Low-Dimen. Syst. Nanostruct., 87, 254-260. https://doi.org/10.1016/j.physe.2016.10.048.
  2. Abbas, I.A. (2014), "Three-phase lag model on thermoelastic interaction in an unbounded fiber-reinforced anisotropic medium with a cylindrical cavity", J. Comput. Theor. Nanosci., 11(4), 987-992. https://doi.org/10.1166/jctn.2014.3454
  3. Abbas, I.A. (2014a), "Eigenvalue approach for an unbounded medium with a spherical cavity based upon two-temperature generalized thermoelastic theory", J. Mech. Sci. Technol., 28(10), 4193-4198. https://doi.org/10.1007/s12206-014-0932-6.
  4. Abbas, I.A. (2014b), "Nonlinear transient thermal stress analysis of thick-walled FGM cylinder with temperature-dependent material properties", Meccanica, 49(7), 1697-1708. https://doi.org/10.1007/s11012-014-9948-3.
  5. Abbas, I.A. (2016), "Free vibration of a thermoelastic hollow cylinder under two-temperature generalized thermoelastic theory", Mech. Based Des. Struct. Machines, 45(3), 395-405. https://doi.org/10.1080/15397734.2016.1231065.
  6. Abbas, I.A. and Othman, M.I.A. (2012), "Generalized thermoelastic interaction in a fiber-reinforced anisotropic halfspace under hydrostatic initial stress", J. Vib. Control, 18(2), 175-182. https://doi.org/10.1177%2F1077546311402529. https://doi.org/10.1177/1077546311402529
  7. Abbas, I.A. and Youssef, H.M. (2009), "Finite element analysis of two-temperature generalized magneto thermoelasticity", Arch. Appl. Mech., 79, 917-925. https://doi.org/10.1007/s00419-008-0259-9.
  8. Abbas, I.A. and Youssef, H.M. (2012), "A nonlinear generalized thermoelasticity model of temperature-dependent materials using finite element method", Int. J. Thermophys., 33(7), 1302-1313. https://doi.org/10.1007/s10765-012-1272-3.
  9. Abbas, I.A. and Youssef, H.M. (2013), "Two-temperature generalized thermoelasticity under ramp-type heating by finite element method" Meccanica, 48(2), 331-339. https://doi.org/10.1007/s11012-012-9604-8.
  10. Abbas, I.A. and Zenkour, A.M. (2014), "Two-temperature generalized thermoelastic interaction in an infinite fiberreinforced anisotropic plate containing a circular cavity with two relaxation times", J. Comput. Theor. Nanosci., 11 (1), 1-7. https://doi.org/10.1166/jctn.2014.3309.
  11. Ajri, M., Fakhrabadi, M.M.S. and Rastgoo, A. (2018), "Analytic solution for nonlinear dynamic behavior of viscoelastic nanoplates modified by consistent couple stress theory", Lat. Amer. J. Solids Struct., 15(9), e113. https://doi.org/10.1590/1679-78254918.
  12. Arif, S.M., Biwi, M. and Jahangir, A. (2018), "Solution of algebraic lyapunov equation on positive-definite hermitian matrices by using extended Hamiltonian algorithm", Comput. Mater. Continua, 54, 181-195.
  13. Chen, W. and Li, X. (2014), "A new modified couple stress theory for anisotropic elasticity and microscale laminated Kirchhoff plate model", Arch. Appl. Mech., 84(3), 323-341. https://doi.org/10.1007/s00419-013-0802-1.
  14. Cosserat, E. and Cosserat, F. (1909), Theory of Deformable Bodies, Hermann et Fils, Paris, France.
  15. Ezzat, M. and AI-Bary, A. (2016), "Magneto-thermoelectric viscoelastic materials with memory dependent derivatives involving two temperature", Int. J. Appl. Electromag. Mech., 50(4), 549-567. https://doi.org/10.3233/JAE-150131.
  16. Fahsi, A., Tounsi, A., Hebali, H., Chikh, A., Adda Bedia, E.A. and Mahmoud, S.R. (2017), "A four variable refined nth-order shear deformation theory for mechanical and thermal buckling analysis of functionally graded plates", Geomech. Eng., 13(3), 385-410. https://doi.org/10.12989/gae.2017.13.3.385.
  17. Farokhi, H. and Ghayesh, M.H. (2015), "Nonlinear dynamical behaviour of geometrically imperfect microplates based on modified couple stress theory", Int. J. Mech. Sci., 90, 133-144. https://doi.org/10.1016/j.ijmecsci.2014.11.002.
  18. Ghasemi, A.R. and Mohandes, M. (2016), "Size-dependent bending of geometrically nonlinear of micro-laminated composite beam based on modified couple stress theory", Mech. Adv. Compos. Struct., 3, 53-62. https://dx.doi.org/10.22075/macs.2016.434.
  19. Hadjesfandiari, A.R. and Dargush, G.F. (2011), "Couple stress theory for solids", Int. J. Solids Struct., 48(18), 2496-2510. https://doi.org/10.1016/j.ijsolstr.2011.05.002.
  20. Hassan, M., Marin M., Ellahi, R. and Alamri, S.Z. (2018), "Exploration of convective heat transfer and flow characteristics synthesis by Cu-Ag/water hybrid-nanofluids", Heat Transfer Res., 49(18), 1837-1848. https://doi.org/10.1615/HeatTransRes.2018025569.
  21. He, L., Lou, J., Zhang, E., Wang, Y. and Bai Y. (2015), "A size-dependent four variable refined plate model for functionally graded microplates based on modified couple stress theory", Compos. Struct., 130, 107-115. https://doi.org/10.1016/j.compstruct.2015.04.033.
  22. Hendou, R.H. and Mohammadi, A.K. (2014), "Transient analysis of nonlinear Euler-Bernoulli micro-beam with thermoelastic damping, via nonlinear normal modes", J. Sound Vib., 333(23), 6224-6236. https://doi.org/10.1016/j.jsv.2014.07.002.
  23. Homayounfard, M., Daneshmehr, A. and Salari, A. (2018), "A finite element formulation for crack problem in couple stress elasticity", Int. J. Appl. Mech., 10(2), 1850018. https://doi.org/10.1142/S1758825118500187.
  24. Honig, G. and Hirdes, U. (1984), "A method for the numerical inversion of the Laplace transform", J. Comput. Appl. Math., 10(1), 113-132. https://doi.org/10.1016/0377-0427(84)90075-X
  25. Jung, W.Y., Park, W.T. and Han, S.C. (2014), "Bending and vibration analysis of S-FGM microplates embedded in Pasternak elastic medium using the modified couple stress theory", Int. J. Mech. Sci., 87, 150-162. https://doi.org/10.1016/j.ijmecsci.2014.05.025.
  26. Kahrobaiyan, M.H., Asghari, M. and Ahmadian, M.T. (2014), "A Timoshenko beam element based on the modified couple stress theory", Int. J. Mech. Sci., 79, 75-83. https://doi.org/10.1016/j.ijmecsci.2013.11.014.
  27. Ke, L.L., Wang, Y.S. and Wang, Z.D. (2011), "Thermal effect on free vibration and buckling of size-dependent microbeams", Physica E: Low-dimen. Syst. Nanostruct., 43(7), 1387-1393. https://doi.org/10.1016/j.physe.2011.03.009.
  28. Khorshidi, K. and Fallah, A. (2017), "Free vibration analysis of size-dependent, functionally graded, rectangular nano/microplates based on modified nonlinear couple stress shear deformation plate theories", Mech. Adv. Compos. Struct., 4, 127-137. https://doi.org/10.22075/macs.2017.1800.1094.
  29. Koiter, W.T. (1964), "Couple stresses in the theory of elasticity, I and II", Philosoph. Trans. Royal Soc. London B, 67, 17-29.
  30. Kumar, R. and Devi, S. (2019), "Resonance of nanoscale beam due to various sources in modified couple stress thermoelastic diffusion with phase lags", Mech. Mech. Eng., 23, 36-49. https://doi.org/10.2478/mme-2019-0006.
  31. Kumar, R., Sharma, N. and Lata, P. (2016), "Thermomechanical interactions due to inclined load in transversely isotropic magnatothermoelastic medium with and without energy dissipation with two temperatures and rotation", J. Solid Mech., 8(4), 840-858.
  32. Lata, P. (2018a), "Reflection and refraction of plane waves in layered nonlocal elastic and anisotropic thermoelastic medium", Struct. Eng. Mech., 66(1), 113-124. https://doi.org/10.12989/sem.2018.66.1.113.
  33. Lata, P. (2018b), "Effect of energy dissipation on plane waves in sandwiched layered thermoelastic medium", Steel Compos. Struct., 27(4), 439-451. https://doi.org/10.12989/scs.2018.27.4.439.
  34. Lata, P. and Kaur, H. (2019a), "Deformation in transversely isotropic thermoelastic medium using new modified couple stress theory in frequency domain", Geomech. Eng., 19(5), 369-381. https://doi.org/10.12989/gae.2019.19.5.369.
  35. Lata, P. and Kaur, H. (2019), "Axisymmetric deformation in transversely isotropic thermoelastic medium using new modified couple stress theory", Coupled Syst. Mech., 8(6), 501-522. https://doi.org/10.12989/csm.2019.8.6.501.
  36. Lata, P. and Kaur, I. (2019), "Transversely isotropic thick plate with two temperature and GN type-III in frequency domain", Coupled Syst. Mech., 8(1), 55-70. http://doi.org/10.12989/csm.2019.8.1.055.
  37. Lou, J., He, L. and Du, J. (2015), "A unified higher order plate the-ory for functionally graded microplates based on the modified couple stress theory", Compos. Struct., 133, 1036-1047. https://doi.org/10.1016/j.compstruct.2015.08.009.
  38. Marin, M. (2009), "On the minimum principle for dipolar materials with stretch", Nonlin. Anal. RWA, 10(3), 1572-1578. https://doi.org/10.1016/j.nonrwa.2008.02.001
  39. Marin, M. (2010), "Some estimates on vibrations in thermoelasticity of dipolar bodies", J. Vib. Control, 16(1), 33-47. https://doi.org/10.1177%2F1077546309103419. https://doi.org/10.1177/1077546309103419
  40. Marin, M. (1994), "The Lagrange identity method in thermoelasticity of bodies with microstructure", Int. J. Eng. Sci., 32(8), 1229-1240. https://doi.org/10.1016/0020-7225(94)90034-5.
  41. Marin, M. and Nicaise, S. (2016), "Existence and stability results for thermoelastic dipolar bodies with double porosity", Continuum Mech. Thermodyn., 28(6), 1645-1657. https://doi.org/10.1007/s00161-016-0503-4.
  42. Marin, M., Craciun, E.M. and Pop, N. (2016), "Considerations on mixed initial-boundary value problems for micropolar porous bodies", Dyn. Syst. Appl., 25 (1-2), 175-196.
  43. Marin, M., Ellahi, R. and Chirila, A. (2017), "On solutions of Saint-Venant's problem for elastic dipolar bodies with voids", Carpathian J. Math., 33(2), 219-232. https://doi.org/10.37193/CJM.2017.02.09
  44. Marin, M., Vlase, S., Ellahi, R. and Bhatti, M.M. (2019), "On the partition of energies for the backward in time problem of thermoelastic materials with a dipolar structure", Symmetry, 11(7), 1-16. https://doi.org/10.3390/sym11070863.
  45. Mohammadimehr, M. and Mohandes, M. (2015), "The effect of modified couple stress theory on buckling and vibration analysis of functionally graded double-layer Boron Nitride piezoelectric plate based on CPT", J. Solid Mech., 7(3), 281-298.
  46. Othman, M.I.A. and Marin, M. (2017), "Effect of thermal loading due to laser pulse on thermoelastic porous medium under G-N theory", Results Phys., 7, 3863-3872. https://doi.org/10.1016/j.rinp.2017.10.012.
  47. Othman, M.I.A., Atwa, S.Y., Jahangir, A. and Khan, A. (2013), "Generalized magneto-thermo-microstretch elastic solid under gravitational effect with energy dissipation", Multidisciplin. Model. Mater. Struct., 9(2), 145-176. https://doi.org/10.1108/MMMS-01-2013-0005.
  48. Press W.H., Teukolsky S.A., Vellerling W.T. and Flannery B.P. (1986), Numerical Recipe, Cambridge University Press.
  49. Salamat-talab, M., Nateghi, A. and Torabi, J. (2012), "Static and dynamic analysis of third-order shear deformation FG micro beam based on modified couple stress theory", Int. J. Mech. Sci., 57, 63-73. https://doi.org/10.1016/j.ijmecsci.2012.02.004.
  50. Shaat, M., Mahmoud, F.F., Gao, X.L. and Faheem, A.F. (2014), "Size-dependent bending analysis of Kirchhoff nano-plates based on a modified couple-stress theory including surface effect", Int. J. Mech. Sci., 79, 31-37. https://doi.org/10.1016/j.ijmecsci.2013.11.022.
  51. Sharma, N., Kumar, R. and Lata, P. (2015), "Disturbance due to inclined load in transversely isotropic thermoelastic medium with two temperatures and without energy dissipation", Mater. Phys. Mech., 22, 107-117.
  52. Sherief, H.H. and Saleh H. (2005), "A half-space problem in the theory of generalized thermoelastic diffusion", Int. J. Solids Struct., 42, 4484-4493. https://doi.org/10.1016/0377-0427(84)90075-X.
  53. Thai, H.T. and Kim, S.E. (2013), "A size-dependent functionally graded Reddy plate model based on a modified couple stress theory", Compos. Part B Eng., 45(1), 1636-1645. https://doi.org/10.1016/j.compositesb.2012.09.065.
  54. Wang, Y.G., Lin, W.H. and Liu, N. (2013), "Large amplitude free vibration of size-dependent circular microplates based on the modified couple stress theory", Int. J. Mech. Sci., 71, 51-57. https://doi.org/10.1016/j.ijmecsci.2013.03.008.
  55. Zhang, B., He, Y., Liu, D., Shen, L. and Lei, J. (2015), "An efficient size-dependent plate theory for bending, buck-ling and free vibration analyses of functionally graded microplates resting on elastic foundation", Appl. Math. Modell., 39(13), 3814-3845. https://doi.org/10.1016/j.apm.2014.12.001.

Cited by

  1. Time Harmonic interactions in the axisymmetric behaviour of transversely isotropic thermoelastic solid using New M-CST vol.9, pp.6, 2020, https://doi.org/10.12989/csm.2020.9.6.521
  2. The Fractional Strain Influence on a Solid Sphere under Hyperbolic Two-Temperature Generalized Thermoelasticity Theory by Using Diagonalization Method vol.2021, 2020, https://doi.org/10.1155/2021/6644133