DOI QR코드

DOI QR Code

파이센 이온젤 기반 단일층 전기변색 소자의 변색 특성에 대한 연구

Electrochromic Performance of Single-layered Electrochromic Device Containing Picene Ion Gel

  • 김남현 (부산대학교 유기소재시스템공학과) ;
  • 박종승 (부산대학교 유기소재시스템공학과)
  • Kim, Namhyeon (Department of Organic Material Science and Engineering, Pusan National University) ;
  • Park, Jong S. (Department of Organic Material Science and Engineering, Pusan National University)
  • 투고 : 2020.04.02
  • 심사 : 2020.04.23
  • 발행 : 2020.04.30

초록

Electrochromism is a phenomenon in which the color of an electroactive material changes when a voltage is applied. Polyaromatic hydrocarbons (PAHs) are colorless in the neutral state owing to their broad bandgap; however, under the applied voltage, they exhibit various colors during oxidation or reduction owing to the molecular plasma resonance phenomena. Among PAH materials, picene is an intriguing material, which has not been employed as an electrochromic material because of its high stability with a bandgap of more than 3 eV. In this study, the electrochromic performance of a picene-containing ion gel consisting of poly(vinylidene-co-hexafluoropropylene) and imidazole-based ionic liquid (IL) was investigated. In an electrochromic device (ECD) fabricated on indium tin oxide (ITO) glass, the picene ECD was colorless in the neutral state; in the oxidation and reduction states, it showed reversible changes to yellow with an absorption peak at 520 nm. As the IL content increased, the bandgap decreased, and the switching behavior improved slightly. To further enhance the electrochromic performance, silver nanowires (AgNWs) were applied to the ITO electrodes. Compared with pristine ITO, the AgNW-based electrode exhibited significant improvement in optical contrast. Silver fabrics were used to produce highly flexible textile-based ECDs, which showed vivid and reversible electrochromic transitions under an applied voltage.

키워드

과제정보

본 연구는 산업통상자원부의 지원을 받아 수행된 연구임(과제번호 10052838).

참고문헌

  1. C. A. Cutler, M. Bouguettaya, and J. R. Reynolds, "PEDOT Polyelectrolyte Based Electrochromic Films via Electrostatic Adsorption", Adv. Mater., 2002, 14, 684-688. https://doi.org/10.1002/1521-4095(20020503)14:9<684::AID-ADMA684>3.0.CO;2-7
  2. R. J. Mortimer, A. L. Dyer, and J. R. Reynolds, "Electrochromic Organic and Polymeric Materials for Display Application", Displays, 2006, 27, 2-18. https://doi.org/10.1016/j.displa.2005.03.003
  3. G. Cai, J. Wang, and P. S. Lee, "Next-generation Multifunctional Electrochromic Devices", Acc. Chem. Res., 2016, 49, 1469-1476. https://doi.org/10.1021/acs.accounts.6b00183
  4. H. C. Moon, C.-H. Kim, T. P. Lodge, and C. D. Frisbie, "Multicolored, Low-power, Flexible Electrochromic Devices Based on Ion Gels", ACS Appl. Mater. Interfaces, 2016, 8, 6252-6260. https://doi.org/10.1021/acsami.6b01307
  5. H. C. Moon, T. P. Lodge, and C. D. Frisbie, "Solution Processable, Electrochromic Ion Gels for Sub-1 V, Flexible Displays on Plastic", Chem. Mater., 2015, 27, 1420-1425. https://doi.org/10.1021/acs.chemmater.5b00026
  6. G. K. Pande, N. Kim, J. H. Choi, G. Balamurugan, H. C. Moon, and J. S. Park, "Effects of Counter Ions on Electrochromic Behaviors of Asymmetrically Substituted Viologens", Sol. Energy Mater. Sol. Cells, 2019, 197, 25-31. https://doi.org/10.1016/j.solmat.2019.04.004
  7. A. Lauchner, A. E. Schlather, A. Manjavacas, Y. Cui, M. J. McClain, G. J. Stec, F. J. G. de Abajo, P. Nordlander, and N. J. Halas, "Molecular Plasmonics", Nano Lett., 2015, 15, 6208-6214. https://doi.org/10.1021/acs.nanolett.5b02549
  8. R. P. V. Duyne, "Molecular Plasmonics", Science, 2004, 306, 985-986. https://doi.org/10.1126/science.1104976
  9. G. J. Stec, A. Lauchner, Y. Cui, P. Nordlander, and N. J. Halas, "Multicolor Electrochromic Devices Based on Molecular Plasmonics", ACS Nano, 2017, 11, 3254-3261. https://doi.org/10.1021/acsnano.7b00364
  10. H. Okamoto, N. Kawasaki, Y. Kaji, Y. Kubozono, A. Fujiwara, and M. Yamaji, "Air-assisted High-performance Field-effect Transistor with Thin Films of Picene", J. Am. Chem. Soc., 2008, 130, 10470-10471. https://doi.org/10.1021/ja803291a
  11. J. B. Arochiam, H. S. Son, S. H. Han, G. Balamurugan, Y. H. Kim, and J. S. Park, "Iron Phthalocyanine Incorporated Metallo-supramolecular Polymer for Superior Electrochromic Performance with High Coloration Efficiency and Switching Stability", ACS Appl. Energy Mater., 2019, 2, 8416-8424. https://doi.org/10.1021/acsaem.9b01022
  12. G. K. Pande, J. H. Choi, J.-E. Lee, Y. E. Kim, J. H. Choi, H. W. Choi, H. G. Chae, and J. S. Park, "Octa-viologen Substituted Polyhedral Oligomeric Silsesquioxane Exhibiting Outstanding Electrochromic Performances", Chem. Eng. J., 2020, 393, 124690. https://doi.org/10.1016/j.cej.2020.124690
  13. S. Unser, I. Bruzas, J. He, and L. Sagle, "Localized Surface Plasmon Resonance Biosensing: Current Challenges and Approaches", Sensors, 2015, 15, 15684-15716. https://doi.org/10.3390/s150715684
  14. A. Tsuboi, K. Nakamura, and N. Kobayashi, "A Localized Surface Plasmon Resonance-based Multicolor Electrochromic Device with Electrochemically Size-controlled Silver Nanoparticles", Adv. Mater., 2013, 25, 3197-3201. https://doi.org/10.1002/adma.201205214
  15. H. Kim, S. Lee, and H. S. Kim, "Fabrication and Electrical Output Performance of Triboelectric Nanogenerators Composed of Graphene Coated Textile Electrode-dielectric Material Types", Text. Sci. Eng., 2019, 56, 350-359. https://doi.org/10.12772/TSE.2019.56.350
  16. G. Huang, L. Liu, R. Wang, J. Zhang, X. Sun, and H. Peng, "Smart Color-changing Textile with High Contrast Based on a Single-sided Conductive Fabric", J. Mater. Chem. C, 2016, 4, 7589-7594. https://doi.org/10.1039/C6TC02051H