참고문헌
- Bantis, F., S. Smirnakou, T. Ouzounis, A. Koukounaras, N. Ntagkas, and K. Radoglou. 2018. Current status and recent achievements in the field of horticulture with the use of light-emitting diodes (LEDs). Scientia horticulturae. 235:437-451. https://doi.org/10.1016/j.scienta.2018.02.058
- Bian, Z., Q. Yang, T. Li, R. Cheng, Y. Barnett, and C. Lu. 2018. Study of the beneficial effects of green light on lettuce grown under short-term continuous red and blue light-emitting diodes. Physiologia plantarum. 164:226-240. https://doi.org/10.1111/ppl.12713
- Brandenberger, L., T. Cavins, M. Payton, L. Wells, and T. Johnson. 2007. Yield and quality of spinach cultivars for greenhouse production in Oklahoma. HortTechnology. 17:269-272. https://doi.org/10.21273/horttech.17.2.269
- Chen, X.L., W.Z. Guo, X.Z. Xue, L.C. Wang, and X.J. Qiao. 2014. Growth and quality responses of 'Green Oak Leaf' lettuce as affected by monochromic or mixed radiation provided by fluorescent lamp (FL) and light-emitting diode (LED). Scientia Horticulturae. 172:168-175. https://doi.org/10.1016/j.scienta.2014.04.009
- Cui, J., Z.H. Ma, Z.G. Xu, H. Zhang, T.T. Chang, and H.J. Liu. 2009. Effects of supplemental lighting with different light qualities on growth and physiological characteristics of cucumber, pepper and tomato seedlings. Acta Hortic Sin. 5:663-670.
- Debolt, S., V. Melino, and C.M. Ford. 2007. Ascorbate as a biosynthetic precursor in plants. Ann. Bot. 99:3-8. https://doi.org/10.1093/aob/mcl236
- EUR-LEX, 2017. Commission Regulation (EU) No 1258/2011 of 2 December 2011 amending Regulation (EC) No 1881/2006 as regards maximum levels for nitrates in foodstuff, accessed date: 15.08.2017. http://eur-lex.europa. eu/legalcontent/EN/TXT/HTML/?uri=CELEX:32011R1258&from=EN.
- European Food Safety Authority (EFSA). 2008. Nitrate in vegetables-Scientific Opinion of the Panel on Contaminants in the Food chain. EFSA Journal. 689:1-79.
- Folta, K.M. 2004. Green light stimulates early stem elongation, antagonizing light-mediated growth inhibition. Plant Physiol. 135:1407-1416. https://doi.org/10.1104/pp.104.038893
- Hogewoning, S.W., G. Trouwborst, H. Maljaars, H. Poorter, W. van Ieperen, and J. Harbinson. 2010. Blue light doseresponses of leaf photosynthesis, morphology, and chemical composition of cucumis sativus grown under different combinations of red and blue light. J. Exp. Bot., 61:3107-3117. https://doi.org/10.1093/jxb/erq132
- Johkan, M., K. Shoji, F. Goto, S. Hahida, and T. Yoshihara. 2012. Effect of green light wavelength and intensity on photomorphogenesis and photosynthesis in Lactuca sativa. Environ. Exp. Bot. 75:128-133 https://doi.org/10.1016/j.envexpbot.2011.08.010
- Kim, H.H., G.D. Goins, R.M. Wheeler, and J.C. Sager. 2004. Green-light supplementation for enhanced lettuce growth under red-and blue-light-emitting diodes. HortScience. 39:1617-1622. https://doi.org/10.21273/hortsci.39.7.1617
- Li, Y., G. Xin, M. Wei, Q. Shi, F. Yang, and X. Wang. 2017. Carbohydrate accumulation and sucrose metabolism responses in tomato seedling leaves when subjected to different light qualities. Scientia Horticulturae. 225:490-497. https://doi.org/10.1016/j.scienta.2017.07.053
- Lisiewska, Z., W. Kmiecik, P. Gebczynski, and L. Sobczynska. 2011. Amino acid profile of raw and as-eaten products of spinach (Spinacia oleracea L.). Food Chem. 126:460-465. https://doi.org/10.1016/j.foodchem.2010.11.015
- Macedo, A.F., M.V.T. Leal-Costa, S.L. Eliana, L.S. Celso, and M.A. Esquibel. 2011. The effect of light quality on leaf production and development of in vitro-cultured plants of Alternanthera brasiliana Kuntze. Environmental and Experimental Botany. 70:43-50. https://doi.org/10.1016/j.envexpbot.2010.05.012
- Mizuno, T., W. Amaki, and H. Watanabe. 2009. Effects of monochromatic light irradiation by LED on the growth and anthocyanin contents in leaves of cabbage seedlings. In VI International Symposium on Light in Horticulture. 907:179-184.
- Ohasi, K.K., M. Takase, N. Kon, K. Fujiwara, and K. Kurata. 2007. Effect of light quality on growth and vegetable quality in leaf lettuce, spinach and komatsuna. Environ Control Biol. 45:189-198. https://doi.org/10.2525/ecb.45.189
- Oztekin, G.B., T. Uludag, and Y. Tuzel. 2018. Growing spinach (Spinacia oleracea L.) in floating system with different concentrations of nutrient solution. Applied Ecology and Environmental Research. 16:3333-3350. https://doi.org/10.15666/aeer/1603_33333350
- Pardo, G.P., S.T. Velazquez, A. Cruz, and F.R. Martinez. 2016. Pulsed LED light in germination and growth of lettuce seeds. Bothalia Journal. 46:13-26.
- Proietti, S., S. Moscatello, F. Famiani, and A. Battistelli. 2009. Increase of ascorbic acid content and nutritional quality in spinach leaves during physiological acclimation to low temperature. Plant Physiol. Biochem. 47:17-723.
-
Proietti, S., S. Moscatello, G.A. Giacomelli, and A. Battistelli. 2013. Influence of the interaction between light intensity and
$CO_2$ concentration on productivity and quality of spinach (Spinacia oleracea L.) grown in fully controlled environment. Advances in Space Research. 52:1193-1200. https://doi.org/10.1016/j.asr.2013.06.005 - Samuoliene, G., A. Brazaityte, R. Sirtautas, A. Novickovas, and P. Duchovskis. 2012. The effect of supplementary LED lighting on the antioxidant and nutritional properties of lettuce. Acta Horticulturae. 952:835-841. https://doi.org/10.17660/actahortic.2012.952.106
- Samuoliene, G., A. Urbonaviciute, P. Duchovskis, BliznikasZ., P. Vitta, and A. Zukauskas. 2009. Decrease in nitrate concentration in leafy vegetables under a solid-state illuminator. HortScience. 44:1857-1860. https://doi.org/10.21273/hortsci.44.7.1857
- Shimokawa, A., Y. Tonooka, M. Matsumoto, H. Ara, H. Suzuki, N. Yamauchi, and M. Shigyo. 2014. Effect of alternating red and blue light irradiation generated by light emitting diodes on the growth of leaf lettuce. bioRxiv, 003103.
- Son, K.H. and M.M. Oh. 2015. Growth, photosynthetic and antioxidant parameters of two lettuce cultivars as affected by red, green, and blue light-emitting diodes. Horticulture, Environment, and Biotechnology. 56:639-653. https://doi.org/10.1007/s13580-015-1064-3
- Su, N., Q. Wu, Z. Shen, K. Xia, J. Cui. 2014. Effects of light quality on the chloroplastic ultrastructure and photosynthetic characteristics of cucumber seedlings. Plant Growth Regul. 73:227-235 https://doi.org/10.1007/s10725-013-9883-7
- Swartz, T.E., S.B. Corchnoy, J.M. Christie, J.W. Lewis, I. Szundi and Briggs W.R. 2001. The photocycle of a flavinbinding domain of the blue light photoreceptor phototropin. J. Biol. Chem. 276:36493-36500. https://doi.org/10.1074/jbc.M103114200
- Terashima, I., T. Fujita, T. Inoue, W.S. Chow, and R. Oguchi. 2009. Green light drives leaf photosynthesis more efficiently than red light in strong white light: revisiting the enigmatic question of why leaves are green. Plant and Cell Physiology. 50:684-697. https://doi.org/10.1093/pcp/pcp034
- Tomasi, N., P. Roberto, D.C. Luisa, G. Cortella, R. Terzano, T. Mimmo, M. Scampicchio, and S. Cesco. 2015. New 'solutions' for floating cultivation system of ready-to-eat salad: A review. Trends in Food Science & Technology. 46:267-276. https://doi.org/10.1016/j.tifs.2015.08.004
- Wu, Q., N.N. Su, W.B. Shen, J. Cui. 2014. Analyzing photosynthetic activity and growth of Solanum lycopersicum seedlings exposed to different light qualities. Acta Physiol. Plant. 36:411-1420.