DOI QR코드

DOI QR Code

Rock Mechanical Aspects in Site Characterization for HLW Geological Disposal: Current Status and Case Studies

고준위방사성폐기물 심층처분 부지조사를 위한 암반공학적 요소: 국내외 현황 및 사례 조사

  • Choi, Seungbeom (Center for HLW Geological Disposal, Korea Institute of Geoscience and Mineral Resources) ;
  • Kihm, You Hong (Center for HLW Geological Disposal, Korea Institute of Geoscience and Mineral Resources) ;
  • Kim, Eungyeong (Center for HLW Geological Disposal, Korea Institute of Geoscience and Mineral Resources) ;
  • Cheon, Dae-Sung (Center for HLW Geological Disposal, Korea Institute of Geoscience and Mineral Resources)
  • 최승범 (한국지질자원연구원 방사성폐기물지층처분연구단) ;
  • 김유홍 (한국지질자원연구원 방사성폐기물지층처분연구단) ;
  • 김은경 (한국지질자원연구원 방사성폐기물지층처분연구단) ;
  • 천대성 (한국지질자원연구원 방사성폐기물지층처분연구단)
  • Received : 2020.03.25
  • Accepted : 2020.04.24
  • Published : 2020.04.30

Abstract

Nuclear power plants have been operated in Korea since 1978, thus the high-level radioactive waste (HLW) produced from the plants has been accumulated accordingly. Hence, it is urgent to secure a final repository for HLW disposal, however, siting process should be preceded, which usually takes long time, as it requires broad and precise investigation. The investigation is generally carried out in stages, which consists of multidisciplinary approaches. In this study, the case studies mainly pertaining to rock mechanics were conducted. Rock mechanical aspects required in each stage and their applications were investigated and corresponding R&D researches were presented as well. At the same time, current research status in Korea was presented, followed by a brief future research plan with regard to the site investigation. The future research aims to produce fundamental information for siting process, and the compiled cases in this study will be utilized as references in the research.

우리나라는 1978년부터 원자력발전소를 운영해왔으며 그에 따른 고준위방사성폐기물 발생이 누적되고 있다. 이를 안전하게 처분하기 위한 영구 처분시설이 시급한 실정이나 처분 부지를 선정하는 과정에서 광범위하고 정밀한 부지조사가 요구되기 때문에 장기간에 걸친 조사가 선행되어야한다. 이러한 부지조사는 단계별로 진행되는 것이 일반적이며 이 과정에서 다학제적 평가가 이루어진다. 본 논문에서는 부지조사 과정에서 요구되는 암반공학적 요소를 중점으로 사례조사를 수행하였다. 단계별로 고려되는 암반공학적 평가요소와 그 적용 사례를 정리하였으며 이 과정에서 수행된 해외 연구 사례를 조사하였다. 동시에 국내 연구현황을 정리하였고 부지조사와 관련된 향후 연구 계획을 간략히 보고하였다. 향후 연구를 통해 부지조사 시 참고할 수 있는 기반자료를 생산하고자 하며 본 논문에서 수집된 사례 역시 활용할 예정이다.

Keywords

References

  1. 산업통상자원부, 2016, 고준위방사성폐기물 관리 기본계획(안).
  2. 한국수력원자력, 2020.1.23., 2019년 4사분기 사용후핵연료 저장현황, 2020.03.23. 검색, http://www.khnp.co.kr/
  3. 한국원자력연구원, 2020.1.28., 사용후핵연료 보관 현황(2019년 4분기), 2020.03.23. 검색, http://www.kaeri.re.kr/
  4. 한국지질자원연구원, 2016, 사용후핵연료 처분연구관련 지질조사 방법론 개발.
  5. Chae, B.G., Choi, J., Kihm Y.H., and Park, S.I., 2017, Geological structural parameters to be considered for siting of HLW repository: A review for case studies of foreign countries. Journal of the Geological Society of Korea, 53(1), pp. 207-219. https://doi.org/10.14770/jgsk.2017.53.1.207
  6. Cho, W.J., Kim, J.S., Lee, C., Kwon, S., and Choi, J.W., 2012, In situ experiments on the performance of near-field for nuclear waste repository at KURT. Nuclear Engineering and Design, 252, pp. 278-288. https://doi.org/10.1016/j.nucengdes.2012.06.020
  7. IAEA, 1994, Siting of geological disposal facilities: A safety guide. Safety series No. 111-G-4 1, IAEA, Vienna, Austria.
  8. IAEA, 2011, Geological disposal facilities for radioactive waste. Specific safety guide No. SSG-14, IAEA, Vienna, Austria.
  9. Jeon, B., Choi, S., Lee, S., and Jeon, S., 2019, A conceptual study for deep borehole disposal of high level radioactive waste in Korea. Tunnel & Underground Space, 29(2), pp. 75-88. https://doi.org/10.7474/TUS.2019.29.2.075
  10. KIGAM, 2007, Construction of deep underground research laboratory and core technology development. GP2007-005-2007(1), KIGAM, Daejeon, Korea.
  11. KIGAM, 2019, Development of nationwide geoenvironmental maps for HLW geological disposal. GP2017-009-2019, KIGAM, Daejeon, Korea.
  12. Kwon, S., Lee, C., and Park, S.H., 2015, THM coupling analysis for Decovalex-2015 Task B2. Tunnel & Underground Space, 25(6), pp. 556-567. https://doi.org/10.7474/TUS.2015.25.6.556
  13. Lee, C.S., Kwon, S.K., Choi, J.W., and Jeon, S,. 2011, An estimation of the excavation damaged zone at the KAERI underground research tunnel. Tunnel & Underground Space, 21(5), pp. 359-369. https://doi.org/10.7474/TUS.2011.21.5.359
  14. NEA, 2001, The role of underground laboratories in nuclear waste disposal programmes. OECD.
  15. Park, J.W., Guglielmi, Y., Graupner, B., Rutqvist, J., and Park, E.S., 2019, Numerical modelling of fault reactivation experiment at Mont Terri underground research laboratory in Switzerland: DECOVALEX-2019 TASK B (Step 2). Tunnel & Underground Space, 29(3), pp. 197-213. https://doi.org/10.7474/TUS.2019.29.3.197
  16. Park, K.W., Kim, K.S., Koh, Y.K., Jo, Y., and Ji, S.H., 2017, Review of site characterization methodology for deep geological disposal of radioactive waste. Journal of Nuclear Fuel Cycle and Waste Technology, 15(3), pp. 239-256. https://doi.org/10.7733/JNFCWT.2017.15.3.239
  17. Posiva, 2000, The site selection process for a spent fuel repository in Finland- Summary report. Posiva 2000-15, Posiva, Helsinki, Finland.
  18. Posiva, 2006, Summary of rock mechanics work completed for Posiva before 2005. Posiva 2006-04, Posiva, Helsinki, Finland.
  19. Posiva, 2008, Core drilling of deep drillhole OL-KR47 at Olkiluoto in Eurajoki 2007-2008. Working report 2008-13, Posiva, Helsinki, Finland.
  20. Posiva, 2012, ONKALO rock mechanics model (RMM) version 2.0. Working report 2012-07, Posiva, Helsinki, Finland.
  21. SKB, 1998, Parameters of importance to determine during geoscientific site investigation. TR-98-02, SKB, Stockholm, Sweden.
  22. SKB, 2002, Swedish deep repository siting programme: Guide to the documentation of 25 years of geoscientific research (1976-2000). TR-02-18, SKB, Stockholm, Sweden.
  23. Wang, J., Chen, L., Su, R., and Zhao, X., 2018, The Beishan underground research laboratory for geological disposal of high-level radioactive waste in China: Planning, site selection, site characterization and in situ tests. Journal of Rock Mechanics and Geotechnical Engineering, 10, pp. 411-435. https://doi.org/10.1016/j.jrmge.2018.03.002