DOI QR코드

DOI QR Code

One-pot 습식화학공정을 이용한 TiO2 중공 구조체 제조 및 광촉매 활성 연구

Fabrication and Photocatalytic Activity of TiO2 Hollow Structures using One-pot Wet Chemical Process

  • 이덕희 (고등기술연구원 융합소재연구센터) ;
  • 박경수 (고등기술연구원 융합소재연구센터) ;
  • 박재량 (고등기술연구원 융합소재연구센터) ;
  • 이찬기 (고등기술연구원 융합소재연구센터)
  • Lee, Duk-Hee (Materials Science & Chemical Engineering Center, Institute for Advanced Engineering) ;
  • Park, Kyung-Soo (Materials Science & Chemical Engineering Center, Institute for Advanced Engineering) ;
  • Park, Jae-Ryang (Materials Science & Chemical Engineering Center, Institute for Advanced Engineering) ;
  • Lee, Chan-Gi (Materials Science & Chemical Engineering Center, Institute for Advanced Engineering)
  • 투고 : 2020.04.07
  • 심사 : 2020.04.23
  • 발행 : 2020.04.28

초록

A facile one-pot wet chemical process to prepare pure anatase TiO2 hollow structures using ammonium hexafluorotitanate as a precursor is developed. By defining the formic acid ratio, we fabricate TiO2 hollow structures containing fluorine on the surface. The TiO2 hollow sphere is composed of an anatase phase containing fluorine by various analytical techniques. A possible formation mechanism for the obtained hollow samples by self-transformation and Ostwald ripening is proposed. The TiO2 hollow structures containing fluorine exhibits 1.2 - 2.7 times higher performance than their counterparts in photocatalytic activity. The enhanced photocatalytic activity of the TiO2 hollow structures is attributed to the combined effects of high crystallinity, specific surface area (62 ㎡g-1), and the advantage of surface fluorine ions (at 8%) having strong electron-withdrawing ability of the surface ≡ Ti-F groups reduces the recombination of photogenerated electrons and holes.

키워드

참고문헌

  1. A. Fujishima and K. Honda: Nature, 238 (1972) 37. https://doi.org/10.1038/238037a0
  2. J. G. Yu, W. Liu and H. G. Yu: Cryst. Growth Des., 8 (2008) 930. https://doi.org/10.1021/cg700794y
  3. X. B. Chen and S. S. Mao: Chem. Rev., 107 (2007) 2891. https://doi.org/10.1021/cr0500535
  4. Y. Aykut, C. D. Saquing, B. Pourdeyhimi, G. N. Parsons and S. A. Khan: ACS Appl. Mater. Inter., 4 (2012) 3837. https://doi.org/10.1021/am300524a
  5. C. Chen, W. Ma and J. Zhao: Chem. Soc. Rev., 39 (2010) 4206. https://doi.org/10.1039/b921692h
  6. A. Pandikumar, S. Murugesan and R. Ramaraj: ACS Appl. Mater. Inter., 2 (2010) 1912. https://doi.org/10.1021/am100242p
  7. S. Liu, J. Yu and M. Jaroniec: Chem. Mater., 23 (2011) 4085. https://doi.org/10.1021/cm200597m
  8. H. B. Wu, H. H. Hng and X. W. Lou: Adv. Mater., 15 (2012) 2567.
  9. J. Wang, D. N. Tafen, J. P. Lewis, Z. Hong, A. Manivannan, M. Zhi and N. Wu: J. Am. Chem. Soc., 131 (2009) 12290. https://doi.org/10.1021/ja903781h
  10. Q. Xiang, K. Lv and J. Yu: Appl. Catal. B, 96 (2010) 557. https://doi.org/10.1016/j.apcatb.2010.03.020
  11. J. G. Yu, W. Liu and H. G. Yu: Cryst. Growth Des, 8 (2008) 930. https://doi.org/10.1021/cg700794y
  12. Y. Zhang, Z. Zhao, J. Chen, L. Cheng, J. Chang, W. Sheng, C. Hu and S. Cao: Appl. Catal. B, 165 (2015) 715. https://doi.org/10.1016/j.apcatb.2014.10.063
  13. T. H. Eun, S. H. Kim, W. J. Jeong, S. J. Jeon, S. H. Kim and S. M. Yang: Chem. Mater., 21 (2009) 201. https://doi.org/10.1021/cm8017133
  14. Z. Jin, F. Wang, F. Wang, J. Wang, J. C. Yu and J. Wang: Adv. Funct. Mater., 23 (2013) 2137. https://doi.org/10.1002/adfm.201202600
  15. N. Yao, S. Cao and K. L. Yeung: Micropor. Mesopor. Mat., 221 (2009) 570.
  16. W. Shen, Y. Zhu, X. Dong, J. Gu and J. Shi: Chem. Lett., 34 (2005) 840. https://doi.org/10.1246/cl.2005.840
  17. N. Akiya and P. E. Savage: AIChE J., 44 (1998) 405. https://doi.org/10.1002/aic.690440217
  18. H. G. Yang and H. C. Zeng: J. Phys. Chem. B, 108 (2004) 3492. https://doi.org/10.1021/jp0377782
  19. S. Shang, X. Jiao and D. Chen: ACS Appl. Mater. Inter., 4 (2012) 860. https://doi.org/10.1021/am201535u
  20. B. Wang, X. Y. Lu, L. K. Yu, J. Xuan, M. K. H. Leung and H. Guo: CrystEngComm, 16 (2014) 10046. https://doi.org/10.1039/C4CE00826J
  21. H. G. Yang and H. C. Zeng: J. Phys. Chem. B, 108, (2004) 3492. https://doi.org/10.1021/jp0377782
  22. J. Yu, W. Wang, B. Cheng and B. L. Su: J. Phys. Chem. C, 113 (2009) 6743. https://doi.org/10.1021/jp900136q
  23. J. Yu, Q. Xiang, J. Ran and S. Mann: CrystEngComm, 12 (2010) 872. https://doi.org/10.1039/B914385H
  24. G. Wu, J. Wang, D. F. Thomas and A. Chen: Langmuir, 24 (2008) 3503. https://doi.org/10.1021/la703098g
  25. D. S. Kim, S. J. Han and S. Y. Kwak: J. Coll. Inter. Sci., 316 (2007) 85. https://doi.org/10.1016/j.jcis.2007.07.037
  26. K. Dai, L. Lu, Q. Liu, G. Zhu, Q. Liu and Z. Liu: Dalton Trans., 43 (2014) 2202. https://doi.org/10.1039/C3DT52542B