DOI QR코드

DOI QR Code

Effect of KCl(s) and K2SO4(s) on Oxidation Characteristics of the 2.25Cr-1Mo Steel in 10%O2+10%CO2 Gas Environment at 650 ℃

650 ℃의 10%O2+10%CO2 가스 환경에서 2.25Cr-1Mo강의 산화특성에 미치는 KCl(s)과 K2SO4(s)의 영향

  • Jung, Kwang-Hu (Division of marine engineering, Graduate school, Mokpo national maritime university) ;
  • Kim, Seong-Jong (Division of marine engineering, Mokpo national maritime university)
  • 정광후 (목포해양대학교 대학원 기관시스템공학과) ;
  • 김성종 (목포해양대학교 기관시스템공학부)
  • Received : 2019.11.12
  • Accepted : 2019.12.17
  • Published : 2020.02.28

Abstract

In this study, the effects of KCl(s) and K2SO4(s) on the oxidation characteristics of 2.25Cr-1Mo steel were investigated for 500 h in 10O2 + 10CO2 (vol%) gas environmen at 650 ℃. Oxidation kinetics were characterized by weight gain, oxide layer thickness, and fitted models for the experiment data were proposed. The fitted models presented considerable agreement with the experimental data. The oxide layer was analyzed using the scanning electron microscope, optical microscope, and energy dispersive X-ray spectroscopy. The oxidation kinetics of 2.25Cr-1Mo steel with KCl and K2SO4 coatings showed significantly different oxidation kinetics. KCl accelerated the oxidation rate very much and had linear oxidation behavior. In contrast, K2SO4 had no significant effect, which had parabolic kinetics. The oxide layer was commonly composed of Fe2O3, Fe3O4, and FeCr2O4 spinel. KCl strongly accelerated the oxidation rates of 2.25Cr-1Mo steel in the high-temperature oxidation environment. Conversely, K2SO4 had little effect on the oxidation rates.

Keywords

References

  1. D. B. Lee, Korean Inst. Surf. Eng., 49, 14 (2016). https://doi.org/10.5695/JKISE.2016.49.1.14
  2. W. M. Lu, T. J. Pan, K. Zhang, and Y. Niu, Corros. Sci., 50, 1900 (2008). https://doi.org/10.1016/j.corsci.2008.03.004
  3. Y. S. Li, M. Sanchez-Pasten, and M. Spiegel, Mater. Sci. Forum, 461, 1047 (2004). https://doi.org/10.4028/www.scientific.net/MSF.461-464.1047
  4. P. Mayer, and A. V. Manolescu, Corrosion, 36, 369 (1980). https://doi.org/10.5006/0010-9312-36.7.369
  5. D. Jiang, H. Xu, Z. Zhu, B. Deng, and N. Zhang, Oxid. Met., 87, 189 (2017). https://doi.org/10.1007/s11085-016-9665-5
  6. A. Persdotter, M. Sattari, E. Larsson, M. O. Ogaz, J. Liske, and T. Jonsson, Corros. Sci., No. 108234 (2019).
  7. N. Folkeson, T. Jonsson, M. Halvarsson, L. G. Johansson, and J. E. Svensson, Mater. Corros., 62, 606 (2011). https://doi.org/10.1002/maco.201005942
  8. I. S. Kim, B. G. Choi, H. U. Hong, Y. S. Yoo, and C. Y. Jo, Trans Met. & Mater. Eng., 24, 10 (2011).
  9. Z. Zhu, Y. Cheng, B. Xiao, H. I. Khan, H. Xu, and N. Zhang, Energy, 175, 1075 (2019). https://doi.org/10.1016/j.energy.2019.03.146
  10. Y. S. Li, M. Spiegel, and S. Shimada, Mater. Chem. Phys., 93, 217 (2005). https://doi.org/10.1016/j.matchemphys.2005.03.015
  11. J. Pettersson, C. Pettersson, N. Folkeson, L. G. Johansson, E. Skog, and J. E. Svensson, Mater. Sci. Forum, 522, 563 (2006). https://doi.org/10.4028/www.scientific.net/msf.522-523.563
  12. S. R. J. Saunders, M. Monteiro, and F. Rizzo, Prog. Mater. Sci., 53, 775 (2008). https://doi.org/10.1016/j.pmatsci.2007.11.001
  13. A. S. Khanna, High-temperature corrosion, 1st ed., p. 17, World scientific, Singapore (2007).
  14. D. A. Jones, Principles and prevention of corrosion, 2nd ed., p. 420, Prentice Hall (1996).
  15. D. J. Young, High temperature oxidation and corrosion of metals, 2nd ed., p. 3, Elsevier, Amsterdam (2008).
  16. B. Pujilaksono, T. Jonsson, H. Heidari, M. Halvarsson, J. E. Svensson, and L. G. Johansson, Oxid. Met., 75, 183 (2011). https://doi.org/10.1007/s11085-010-9229-z
  17. M. A. Olivas-Ogaz, J. Eklund, A. Persdotter, M. Sattari, J. Liske, J. E. Svensson, and T. Jonsson, Oxid. Met., 91, 291 (2019). https://doi.org/10.1007/s11085-018-9881-2

Cited by

  1. Enhancement of the Corrosion Resistance of CrN Film Deposited by Inductively Coupled Plasma Magnetron Sputtering vol.20, pp.3, 2020, https://doi.org/10.14773/cst.2021.20.3.112