DOI QR코드

DOI QR Code

Corrosion Protection Properties of Cobalt Salt for Water-Based Epoxy Coatings on 2024-T3 Aluminum Alloy

  • Thai, Thu Thuy (Institute for Tropical Technology, Vietnam Academy of Science and Technology) ;
  • Trinh, Anh Truc (Institute for Tropical Technology, Vietnam Academy of Science and Technology) ;
  • Pham, Gia Vu (Institute for Tropical Technology, Vietnam Academy of Science and Technology) ;
  • Pham, Thi Thanh Tam (Faculty of Chemistry, VNU University of Science, Vietnam National University) ;
  • Xuan, Hoan Nguyen (Faculty of Chemistry, VNU University of Science, Vietnam National University)
  • Received : 2019.11.26
  • Accepted : 2019.12.18
  • Published : 2020.02.28

Abstract

In this paper, the efficiency and the inhibition mechanisms of cobalt salts (cobalt nitrate and cobalt-exchange silica Co/Si) for the corrosion protection of AA2024 were investigated in a neutral aqueous solution by using the electrochemical impedance spectroscopy (EIS) and polarization curves. The experimental measurements suggest that cobalt cation plays a role as a cathodic inhibitor. The efficiency of cobalt cation was important at the concentration range from 0.001 to 0.01 M. The formation of precipitates of oxides/hydroxides of cobalt on the surface at low inhibitor concentration was confirmed by the Scanning Electron Microscopy/Energy Dispersive X-Ray Spectroscopy (SEM/EDS) analysis. EIS measurements were also conducted for the AA2024 surface covered by water-based epoxy coating comprising Co/Si salt. The results obtained from exposure in the electrolyte demonstrated the improvement of the barrier and inhibition properties of the coating exposed in the electrolyte solution for a lengthy time. The SEM/EDS analysis in artificial scribes of the coating after salt spray testing revealed the release of cobalt cations in the coating defect to induce the barrier layer on the exposed AA2024 substrate.

Keywords

References

  1. I. M. Zin, R. L. Howard, S. J. Badger, J. D. Scantlebury, and S. B. Lyon, Prog. Org. Coat., 33, 203 (1998). https://doi.org/10.1016/S0300-9440(98)00056-3
  2. M. Kendig, S. Jeanjaquet, R. Addison, and J. Waldrop, Surf. Coat. Technol., 140, 58 (2001). https://doi.org/10.1016/s0257-8972(01)01099-4
  3. J. Vander Kloet, W. Schmidt, A. W. Hassel, and M. Stratmann, Electrochim. Acta, 48, 1211 (2003). https://doi.org/10.1016/S0013-4686(02)00829-0
  4. R. L. Twite and G. P. Bierwagen, Prog. Org. Coat., 33, 91 (1998). https://doi.org/10.1016/S0300-9440(98)00015-0
  5. G. Williams, A. J. Coleman, and H. Neil Mc Murray, Electrochim. Acta, 55, 5947 (2010). https://doi.org/10.1016/j.electacta.2010.05.049
  6. G. Boisier, N. Portail, and N. Pebere, Electrochim. Acta, 55, 6182 (2010). https://doi.org/10.1016/j.electacta.2009.10.080
  7. S. J. Garcia, T. A. Markley, J. M. C. Mol, and A. E. Hughes, Corros. Sci., 69, 346 (2013). https://doi.org/10.1016/j.corsci.2012.12.018
  8. S. Marcelin and N. Pebere, SCorros. Sci., 101, 66 (2015). https://doi.org/10.1016/j.corsci.2015.09.002
  9. P. Visser, H. Terryn, and J. M. C. Mol, Corros. Sci., 140, 272 (2018). https://doi.org/10.1016/j.corsci.2018.05.037
  10. H. Allachi, F. Chaouket, and K. Draoui, J. Alloy. Compd., 475, 300 (2009). https://doi.org/10.1016/j.jallcom.2008.07.017
  11. M. Bethencourt, F. J. Botana, J. J Calvino, M. Marcos, and M. A. Rodriguez-Chacon, Corros. Sci., 40, 1803 (1998). https://doi.org/10.1016/S0010-938X(98)00077-8
  12. A. J. Aldykiewicz Jr., H. S. Isaacs, and A. J. Davenport, J. Electrochem. Soc., 142, 3342 (1995). https://doi.org/10.1149/1.2049985
  13. A. Davenport, H. Isaacs, and M. Kendig, J. Electrochem. Soc., 136, 1837 (1989). https://doi.org/10.1149/1.2097040
  14. M. Dabala, L. Armelao, A. Buchberger, and I. Calliari, Appl. Surf. Sci., 172, 312 (2001). https://doi.org/10.1016/S0169-4332(00)00873-4
  15. M. G. A. Khedr and A. M. S. Lashien, Corros. Sci., 33, 137 (1992). https://doi.org/10.1016/0010-938X(92)90023-V
  16. M. Mahdavian and M. M. Attar, Corros. Sci., 51, 409 (2009). https://doi.org/10.1016/j.corsci.2008.11.010
  17. A. C. Balaskas, M. Curioni, and G. E. Thompson, J. Electrochem. Soc., 161, C389 (2014). https://doi.org/10.1149/2.0711409jes
  18. H. Leidheiser Jr. and I. Suzuki, J. Electrochem. Soc., 128, 242 (1981). https://doi.org/10.1149/1.2127399
  19. H. Leidheiser Jr. and G. W. Simmons, J. Electrochem. Soc., 129, 1658 (1982). https://doi.org/10.1149/1.2124231
  20. A. G. Munoz, Corros. Sci., 47, 2307 (2005). https://doi.org/10.1016/j.corsci.2004.09.009
  21. J. Xiong, D. K. Sarkar, and X-G. Chen, Appl. Surf. Sci., 407, 361 (2017). https://doi.org/10.1016/j.apsusc.2017.02.203
  22. N. Soltani, H. Salavati, and A. Moghadasi, Surf. Interface., 15, 89 (2019). https://doi.org/10.1016/j.surfin.2019.02.006
  23. F. Snogan, C. Blanc, G. Mankowski, and N. Pebere, Surf. Coat. Technol., 154, 94 (2002). https://doi.org/10.1016/S0257-8972(01)01717-0
  24. E. Ghasemi, B. Ramezanzadeh, S. Saket, and S. Ashhari, J. Coat. Technol. Res., 13, 97 (2016). https://doi.org/10.1007/s11998-015-9728-6
  25. M. Amiri1, M. Salavati-Niasari1, A. Akbari1, and R. Razavi, J. Mater. Sci.: Mater. Electron., 28, 10495 (2017). https://doi.org/10.1007/s10854-017-6823-8
  26. P. Rodic, I. Milosev, M. Lekka, F. Andreatta, and L. Fedrizzi, Electrochim. Acta, 308, 337 (2019). https://doi.org/10.1016/j.electacta.2019.04.042
  27. M. Richetta, J. Material Sci. Eng., 6, 1000397 (2017). https://doi.org/10.4172/2169-0022.1000397
  28. M. A. Jakab, F. Presual-Moreno, and J. R. Scully, J. Electrochem. Soc., 153, B244 (2006). https://doi.org/10.1149/1.2200300
  29. H. Tamura, N. Katayama, and R. Furuichi, J. Colloid Interf. Sci., 195, 192 (1997). https://doi.org/10.1006/jcis.1997.5148
  30. K. Bonnel, C. Le Pen, and N. Pebere, Electrochim. Acta, 44, 4259 (1999). https://doi.org/10.1016/S0013-4686(99)00141-3