DOI QR코드

DOI QR Code

Purification and Characterization of Anabaena flos-aquae Phenylalanine Ammonia-Lyase as a Novel Approach for Myristicin Biotransformation

  • Arafa, Asmaa M. (Department of Pharmacognosy, Faculty of Pharmacy, Zagazig University) ;
  • Abdel-Ghany, Afaf E. (Department of Pharmacognosy, Faculty of Pharmacy, Zagazig University) ;
  • El-Dahmy, Samih I. (Department of Pharmacognosy, Faculty of Pharmacy, Zagazig University) ;
  • Abdelaziz, Sahar (Department of Pharmacognosy, Faculty of Pharmacy, Zagazig University) ;
  • El-Ayouty, Yassin (Enzymology and Fungal Biotechnology Lab (EFBL), Botany and Microbiology Department, Faculty of Science, Zagazig University) ;
  • El-Sayed, Ashraf S.A. (Enzymology and Fungal Biotechnology Lab (EFBL), Botany and Microbiology Department, Faculty of Science, Zagazig University)
  • Received : 2019.08.06
  • Accepted : 2019.09.27
  • Published : 2020.04.28

Abstract

Phenylalanine ammonia-lyase (PAL) catalyzes the reversible deamination of phenylalanine to cinnamic acid and ammonia. Algae have been considered as biofactories for PAL production, however, biochemical characterization of PAL and its potency for myristicin biotransformation into MMDA (3-methoxy-4, 5-methylenedioxyamphetamine) has not been studied yet. Thus, PAL from Anabaena flos-aquae and Spirulina platensis has been purified, comparatively characterized and its affinity to transform myristicin was assessed. The specific activity of purified PAL from S. platensis (73.9 μmol/mg/min) and A. flos-aquae (30.5 μmol/mg/min) was increased by about 2.9 and 2.4 folds by gel-filtration comparing to their corresponding crude enzymes. Under denaturing-PAGE, a single proteineous band with a molecular mass of 64 kDa appeared for A. flos-aquae and S. platensis PAL. The biochemical properties of the purified PAL from both algal isolates were determined comparatively. The optimum temperature of S. platensis and A. flos-aquae PAL for forward or reverse activity was reported at 30℃, while the optimum pH for PAL enzyme isolated from A. flos-aquae was 8.9 for forward and reverse activities, and S. platensis PAL had maximum activities at pH 8.9 and 8 for forward and reverse reactions, respectively. Luckily, the purified PALs have the affinity to hydroaminate the myristicin to MMDA successfully in one step. Furthermore, a successful method for synthesis of MMDA from myristicin in two steps was also established. Gas chromatography-mass spectrometry (GC-MS) analysis was conducted to track the product formation.

Keywords

References

  1. Lovelock S. 2014. The development of novel biocatalysts for the asymmetric hydroamination of alkenes. Ph.D.Thesis, The University of Manchester, United Kingdom.
  2. Koukol J, Conn E. 1961. The metabolism of aromatic compounds in higher plants. J. Biol. Chem. 236: 2692-2698. https://doi.org/10.1016/S0021-9258(19)61721-7
  3. Havir EA, Hanson KR. 1968. L-Phenylalanine ammonia-lyase. II. Mechanism and kinetic properties of the enzyme from potato tubers. Biochemistry 7: 1904-1914. https://doi.org/10.1021/bi00845a039
  4. Hyun MW, Yun YH, Kim JY, Kim SH. 2011. Fungal and plant phenylalanine ammonia-lyase. Mycobiology 39: 257-265. https://doi.org/10.5941/MYCO.2011.39.4.257
  5. Lovelock SL, Turner NJ. 2014. Bacterial Anabaena variabilis phenylalanine ammonia lyase: a biocatalyst with broad substrate specificity. Bioorg. Med. Chem. 22: 5555-5557. https://doi.org/10.1016/j.bmc.2014.06.035
  6. Hu GS, Jia JM, Hur YJ, Chung YS, Lee JH, Yun DJ, et al. 2011. Molecular characterization of phenylalanine ammonia lyase gene from Cistanche deserticola. Mol. Biol. Rep. 38: 3741-3750. https://doi.org/10.1007/s11033-010-0489-0
  7. Tuan PA, Park NI, Li X, Xu H, Kim HH, Park SU. 2010. Molecular cloning and characterization of phenylalanine ammonia-lyase and cinnamate 4-hydroxylase in the phenylpropanoid biosynthesis pathway in garlic (Allium sativum). J. Agric. Food Chem. 58: 10911-10917. https://doi.org/10.1021/jf1021384
  8. MacDonald MJ, D'Cunha GB. 2007. A modern view of phenylalanine ammonia lyase. Biochem. Cell. Biol. 85: 273-282. https://doi.org/10.1139/O07-018
  9. Hemmati S. 2015. Phenylalanine ammonia-lyase through evolution: A bioinformatic approach. Trends Pharm. Sci. 1: 10-14.
  10. Moffitt MC, Louie GV, Bowman ME, Pence J, Noel JP, Moore BS. 2007. Discovery of two cyanobacterial phenylalanine ammonia lyases: kinetic and structural characterization. Biochemistry 46: 1004-1012. https://doi.org/10.1021/bi061774g
  11. Zhu L, Cui W, Fang Y, Liu Y, Gao X, Zhou Z. 2013. Cloning, expression and characterization of phenylalanine ammonia-lyase from Rhodotorula glutinis. Biotechnol. Lett. 35: 751-756. https://doi.org/10.1007/s10529-013-1140-7
  12. Loffelhardt W, Kindl H. 1976. Formation of benzoic acid and p-hydroxybenzoic acid in the blue green alga Anacystis nidulans: A thylakoid-bound enzyme complex analogous to the chloroplast system. Z Naturforsch C. 31: 693-699. https://doi.org/10.1515/znc-1976-11-1212
  13. Fritz RR, Hodgins D, Abell C. 1976. Phenylalanine ammonia-lyase. Induction and purification from yeast and clearance in mammals. J. Biol. Sci. 251: 4646-4650.
  14. MacDonald MC, Arivalagan P, Barre DE, MacInnis JA, D'Cunha GB. 2016. Rhodotorula glutinis Phenylalanine/tyrosine ammonia lyase enzyme catalyzed synthesis of the methyl ester of para-hydroxycinnamic acid and its potential antibacterial activity. Front. Microbiol. 7: 281.
  15. Cui JD, Qiu JQ, Fan XW, Jia SR, Tan ZL. 2014. Biotechnological production and applications of microbial phenylalanine ammonia lyase: a recent review. Crit. Rev. Biotechnol. 34: 258-268. https://doi.org/10.3109/07388551.2013.791660
  16. Sarkissian CN, Kang TS, Gamez A, Scriver CR, Stevens RC. 2011. Evaluation of orally administered PEGylated phenylalanine ammonia lyase in mice for the treatment of Phenylketonuria. Mol. Genet. Metab. 104: 249-254. https://doi.org/10.1016/j.ymgme.2011.06.016
  17. Kim W, Erlandsen H, Surendran S, Stevens RC, Tyring SK, Matalon R, et al. 2004. Trends in enzyme therapy for phenylketonuria. Molecular Therapy. 10: 220-224. https://doi.org/10.1016/j.ymthe.2004.05.001
  18. Levy HL. 1999. Phenylketonuria: old disease, new approach to treatment. PNAS 96: 1811-1813. https://doi.org/10.1073/pnas.96.5.1811
  19. Kovacs K, Banoczi G, Varga A, Szabo I, Holczinger A, Hornyanszky G, et al. 2014. Expression and properties of the highly alkalophilic phenylalanine ammonia-lyase of thermophilic Rubrobacter xylanophilus. PLoS One 9: e85943. https://doi.org/10.1371/journal.pone.0085943
  20. Yamada S, Nabe K, Izuo N, Nakamichi K, Chibata I. 1981. Production of L-phenylalanine from trans-cinnamic acid with Rhodotorula glutinis containing L-phenylalanine ammonia-lyase activity. Appl. Environ. Microbiol. 42: 773-778. https://doi.org/10.1128/aem.42.5.773-778.1981
  21. Evans CT, Hanna K, Payne C, Conrad D, Misawa M. 1987. Biotransformation of trans-cinnamic acid to L-phenylalanine: optimization of reaction conditions using whole yeast cells. Enzyme. Microb. Technol. 9: 417-421. https://doi.org/10.1016/0141-0229(87)90137-2
  22. Evans CT, Conrad D, Hanna K, Peterson W, Choma C, Misawa M. 1987. Novel stabilization of phenylalanine ammonia-lyase catalyst during bioconversion of trans-cinnamic acid to L-phenylalanine. Appl. Microbiol. Biotechnol. 25: 399-405. https://doi.org/10.1007/BF00253308
  23. Kot AM, Blazejak S, Kurcz A, Gientka I, Kieliszek M. 2016. Rhodotorula glutinis-potential source of lipids, carotenoids, and enzymes for use in industries. Appl. Microbiol. Biotechnol. 100: 6103-6117. https://doi.org/10.1007/s00253-016-7611-8
  24. Sohilait HJ, Kainama H. 2015. Synthesis of Myristicin Ketone (3, 4-Methylenedioxy-5-Methoxyphenyl)-2-Propanone from Myristicin. Science 3: 62-66.
  25. Sudradjat SE, Timotius KH, Mun'im A, Anwar E. 2018. The isolation of Myristicin from nutmeg oil by sequences distillation. J. Young Pharm. 10: 20-23. https://doi.org/10.5530/jyp.2018.10.6
  26. Carolina A, Maman M. 2016. Larvicidal activity of essential oils from the leaves and fruits of nutmeg (Myristica fragrans Houtt) against Aedes aegyptis (Diptera: Culicidae). Turkish JAF Sci. Technol. 4: 552-556. https://doi.org/10.24925/turjaf.v4i7.552-556.705
  27. de Cassia da Silveira e Sa R, Andrade LN, dos Reis Barreto de Oliveira R, de Sousa DP. 2014. A review on anti-inflammatory activity of phenylpropanoids found in essential oils. Molecules 19: 1459-1480. https://doi.org/10.3390/molecules19021459
  28. Jana S, Shekhawat G. 2010. Anethum graveolens: An Indian traditional medicinal herb and spice. Pharmacogn. Rev. 4: 179-184. https://doi.org/10.4103/0973-7847.70915
  29. Al-Jumaily EF, Al-Amiry MH. 2012. Extraction and Purification of Terpenes from Nutmeg (Myristica fragrans). J. Al-Nahrain Univ. Sci. 15: 151-160. https://doi.org/10.22401/JNUS.15.3.21
  30. Lee JY, Park W. 2011. Anti-inflammatory effect of myristicin on RAW 264.7 macrophages stimulated with polyinosinicpolycytidylic acid. Molecules 16: 7132-7142. https://doi.org/10.3390/molecules16087132
  31. Lee HS, Jeong TC, Kim JH. 1998. In vitro and in vivo metabolism of myristicin in the rat. J. Chromatogr. B Biomed. Sci. Appl. 705: 367-372. https://doi.org/10.1016/S0378-4347(97)00531-8
  32. Mao W, Zangerl AR, Berenbaum MR, Schuler MA. 2008. Metabolism of myristicin by Depressaria pastinacella CYP6AB3v2 and inhibition by its metabolite. Insect Biochem. Mol. Biol. 38: 645-651. https://doi.org/10.1016/j.ibmb.2008.03.013
  33. Braun U, Kalbhen D. 1973. Evidence for the biogenic formation of amphetamine derivatives from components of nutmeg. Pharmacology 9: 312-316. https://doi.org/10.1159/000136402
  34. Rahman N, Fazilah A, Effarizah M. 2015. Toxicity of Nutmeg (Myristicin): A Review. Int. J. Adv. Sci. Eng. Inf. Technol. 5: 212-215. https://doi.org/10.18517/ijaseit.5.3.518
  35. Shulgin A, Sargent T, Naranjo C. 1973. Animal pharmacology and human psychopharmacology of 3-methoxy-4, 5-methylenedioxyphenylisopropylamine (MMDA). Pharmacology 10: 12-18. https://doi.org/10.1159/000136416
  36. Snyder SH, Weingartner H, Faillace LA. 1970. DOET (2, 5-dimethoxy-4-ethylamphetamine) and DOM (STP)(2, 5-dimethoxy-4-methylamphetamine), new psychotropic agents: their effects in man. Arch. Gen. Psychiatry 24: 50-55. https://doi.org/10.1001/archpsyc.1971.01750070052006
  37. Benzenhofer U, Passie T. 2010. Rediscovering MDMA (ecstasy): the role of the American chemist Alexander T. Shulgin. Addiction 105: 1355-1361. https://doi.org/10.1111/j.1360-0443.2010.02948.x
  38. Shulgin A. 1976. Psychomimetic agents ch. 4 in Maxwell Gordon, pp. 59-146. Psychopharmacological Agents, Ed.
  39. Idle J. 2005. Christmas gingerbread (Lebkuchen) and Christmas cheer-review of the potential role of mood elevating amphetaminelike compounds formed in vivo and in furno. Prague Med. Rep. 106: 27-38.
  40. Nozaki M, Vaupel D, Bright L, Martin W. 1978. A pharmacological comparison of 3-methoxy-4, 5-methylenedioxyamphetamine and LSD in the dog. Drug Alcohol Depend. 3: 153-163. https://doi.org/10.1016/0376-8716(78)90037-6
  41. Snow O. 1998. Amphetamine Syntheses: Overview & Reference Guide for Professionals, pp. 1-278. Ed. Thoth Press.
  42. Passie T, Benzenhofer U. 2018. MDA, MDMA, and other "mescaline-like" substances in the US military's search for a truth drug (1940s to 1960s). Drug Test Anal. 10: 72-80. https://doi.org/10.1002/dta.2292
  43. El-Sayed ASA, Khalaf SA, Ahmed HA. 2013. Characterization of homocysteine g-lyase from submerged and solid fermented cultures of Aspergillus fumigatus JX006238. J. Microbiol. Biotechnol. 23: 499-510. https://doi.org/10.4014/jmb.1208.08070
  44. El-Sayed ASA, Yassin M, Ibrahim H. 2015. Co-Immobilization of L-methioninase and glutamate dehydrogenase on polyacrylamide and chitosan for continuous production of L-homoalanine. Biotechnol. Appl. Biochem. 62: 514-522. https://doi.org/10.1002/bab.1299
  45. El-Sayed ASA, Fujimoto S, Yamada C, Suzuki H. 2010. Enzymatic synthesis of ${\gamma}$-glutamylglutamine, a stable glutamine analogue by ${\gamma}$-glutamyl transpeptidase from Escherichia coli K-12. Biotechnol. Lett. 32: 1877-1881 https://doi.org/10.1007/s10529-010-0364-z
  46. Naranjo C. 1974. The healing journey, pp. 1-235. Ed. Ballantine Books.
  47. El-Sayed ASA, Shouman SA, Nassrat H. 2012. Pharmacokinetics, immunogenicity and anticancer efficiency of Aspergillus flavipes L-methioninase. Enzyme Microb. Technol. 51: 200-210. https://doi.org/10.1016/j.enzmictec.2012.06.004
  48. Shulgin AT. 1964. 3-Methoxy-4, 5-methylenedioxy amphetamine, a new psychotomimetic agent. Nature 201: 1120-1121. https://doi.org/10.1038/2011120a0
  49. Clark CR, DeRuiter J, Noggle FT. 1996. Analysis of 1-(3-methoxy-4, 5-methylenedioxyphenyl)-2-propanamine (MMDA) derivatives synthesized from nutmeg oil and 3-methoxy-4, 5-methylenedioxybenzaldehyde. J .Chromatogr. Sci. 34: 34-42. https://doi.org/10.1093/chromsci/34.1.34
  50. El-Sayed ASA, Abdel-Azim S, Ibrahim H, Yassin MA, Abdel-Ghany S, Esener S, Ali GS. 2015. Biochemical stability and molecular dynamic characterization of Aspergillus fumigatus cystathionine g-Lyase in response to various reaction effectors. Enzyme Microb. Technol. 81: 31-46 https://doi.org/10.1016/j.enzmictec.2015.08.004
  51. El-Sayed AS, Shindia AA, AbouZaid AA, Yassin AM, Ali GS, Sitohy MZ. 2019. Biochemical characterization of peptidylarginine deiminase-like orthologs from thermotolerant Emericella dentata and Aspergillus nidulans. Enzyme Microb. Technol. 124: 41-53. https://doi.org/10.1016/j.enzmictec.2019.02.004
  52. Giri AV, Anandkumar N, Muthukumaran G, Pennathur G. 2004. A novel medium for the enhanced cell growth and production of prodigiosin from Serratia marcescens isolated from soil. BMC Microbiol. 4: 11. https://doi.org/10.1186/1471-2180-4-11
  53. Stanier R, Kunisawa R, Mandel M, Cohen-Bazire G. 1971. Purification and properties of unicellular blue-green algae (order Chroococcales). Bacteriol. Rev. 35: 171. https://doi.org/10.1128/br.35.2.171-205.1971
  54. Zarrouk C. 1966. Contribution a I'etude d'une cyanobacterie: Influence de divers facteurs physiques et chimiques et la photosynthese de Spirulina maxima (Setchell et Gardener) Geitler. Ph. D. Thesis, University of Paris, France.
  55. Beakes GW, Canter HM, Jaworski GH. 1988. Zoospore ultrastructure of Zygorhizidium affluens and Z. planktonicum, two chytrids parasitizing the diatom Asterionella formosa. Can J. Botechnol. 66: 1054-1067.
  56. Raju S, Sowmya S, Alexander Jebakumar P, Guruprasad R. 2014. Potent activator N-arylenamine-3-chloro-4-fluoroaniline for Phenylalanine Ammonia Lyase extracted from Plectranthus amboinicus. Int. J. Adv. Sci. Tech. Res. 4: 56-63.
  57. Varga A, Bata Z, Csuka P, Bordea DM, Vertessy BG, Marcovici A, et al. 2017. Anovel phenylalanine ammonia-lyase from Kangiella Koreensis. Studia Universitatis Babes-Bolyai. Chemia. 62: 293-308.
  58. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193: 265-275. https://doi.org/10.1016/S0021-9258(19)52451-6
  59. Scopes RK. 2013. Protein purification: principles and practice, pp. 1-397. Ed. Springer Science & Business Media, Springer New York.
  60. El-Sayed A, Shindia A. 2011. Characterization and immobilization of purified Aspergillus flavipesl-methioninase: continuous production of methanethiol. J. Appl. Microbiol. 111: 54-69. https://doi.org/10.1111/j.1365-2672.2011.05027.x
  61. El-Sayed AS, Ibrahim H, Sitohy MZ. 2014. Co-immobilization of PEGylated Aspergillus flavipes L-methioninase with glutamate dehydrogenase: a novel catalytically stable anticancer consortium. Enzyme Microb. Technol. 54: 59-69. https://doi.org/10.1016/j.enzmictec.2013.10.004
  62. El-Sayed AS, Hassan MN, Nada HM. 2015. Purification, immobilization, and biochemical characterization of l-arginine deiminase from thermophilic Aspergillus fumigatus KJ 434941: Anticancer activity in vitro. Biotechnol. Prog. 31: 396-405. https://doi.org/10.1002/btpr.2045
  63. El-Sayed AS, Shindia AA, Diab AA, Rady AM. 2014. Purification and immobilization of l-arginase from thermotolerant Penicillium chrysogenum KJ185377. 1; with unique kinetic properties as thermostable anticancer enzyme. Arch. Pharm. Res. [Online ahead of print]
  64. El-Sayed AS, Ruff LE, Ghany SEA, Ali GS, Esener S. 2017. Molecular and spectroscopic characterization of Aspergillus flavipes and Pseudomonas putida L-methionine ${\gamma}$-lyase in vitro. Appl. Biochem. Biotechnol. 181: 1513-1532. https://doi.org/10.1007/s12010-016-2299-x
  65. Lim H-W, Park S, Lim C. 1997. Purification and properties of phenylalanine ammonia-lyase from leaf mustard. Mol. Cells 7: 715-720.
  66. Laemmli UK. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685. https://doi.org/10.1038/227680a0
  67. You CX, Jiang HY, Zhang WJ, Guo SS, Yang K, Lei N, et al. 2015. Contact toxicity and repellency of the main components from the essential oil of Clausena anisum-olens against two stored product insects. J. Insect Sci. 15: 87. https://doi.org/10.1093/jisesa/iev071
  68. Passreiter CM, Akhtar Y, Isman MB. 2005. Insecticidal activity of the essential oil of Ligusticum mutellina roots. Z. Naturforsch C. 60: 411-414. https://doi.org/10.1515/znc-2005-5-608
  69. Gerlacha AdCL, Gadeac A, da Silveirab RMB, Clerca P, Lohezic-le Devehatc F. 2018. The Use of anisaldehyde sulfuric acid as an alternative spray reagent in TLC analysis reveals three classes of compounds in the genus Usnea adans.(Parmeliaceae, lichenized Ascomycota). Preprints 2018, 2018020151 (doi: 10.20944/preprints201802.0151.v1).
  70. Goldson-Barnaby A, Scaman CH. 2013. Purification and characterization of Phenylalanine ammonia lyase from Trichosporon cutaneum. Enzyme Res. 2013: 670702. https://doi.org/10.1155/2013/670702
  71. Louie GV, Bowman ME, Moffitt MC, Baiga TJ, Moore BS, Noel JP. 2006. Structural determinants and modulation of substrate specificity in phenylalanine-tyrosine ammonia-lyases. Chem. Biol. 13: 1327-1338. https://doi.org/10.1016/j.chembiol.2006.11.011
  72. Weise NJ, Parmeggiani F, Ahmed ST, Turner NJ. 2018. Discovery and investigation of mutase-like activity in a phenylalanine ammonia lyase from Anabaena variabilis. Top Catal. 61: 288-295. https://doi.org/10.1007/s11244-018-0898-1
  73. D'cunha GB, Satyanarayan V, Nair PM. 1994. Novel direct synthesis of L-phenylalanine methyl ester by using Rhodotorula glutinis phenylalanine ammonia lyase in an organic-aqueous biphasic system. Enzyme Microb. Technol. 16: 318-322. https://doi.org/10.1016/0141-0229(94)90173-2
  74. Weise NJ, Ahmed ST, Parmeggiani F, Galman JL, Dunstan MS, Charnock SJ, et al. 2017. Zymophore identification enables the discovery of novel phenylalanine ammonia lyase enzymes. Sci. Rep. 7: 13691. https://doi.org/10.1038/s41598-017-13990-0
  75. Rowles I, Groenendaal B, Binay B, Malone KJ, Willies SC, Turner NJ. 2016. Engineering of phenylalanine ammonia lyase from Rhodotorula graminis for the enhanced synthesis of unnatural l-amino acids. Tetrahedron. 72: 7343-7347. https://doi.org/10.1016/j.tet.2016.06.026
  76. Dressen A, Hilberath T, Mackfeld U, Billmeier A, Rudat J, Pohl M. 2017. Phenylalanine ammonia lyase from Arabidopsis thaliana (AtPAL2): a potent MIO-enzyme for the synthesis of non-canonical aromatic alpha-amino acids: Part I: comparative characterization to the enzymes from Petroselinum crispum (PcPAL1) and Rhodosporidium toruloides (RtPAL). J. Biotechnol. 258: 148-157. https://doi.org/10.1016/j.jbiotec.2017.04.005
  77. Bartsch S, Wybenga GG, Jansen M, Heberling MM, Wu B, Dijkstra BW, et al. 2013. Redesign of a phenylalanine aminomutase into a phenylalanine ammonia lyase. ChemCatChem. 5: 1797-1802. https://doi.org/10.1002/cctc.201200871
  78. Bartsch S, Bornscheuer UT. 2010. Mutational analysis of phenylalanine ammonia lyase to improve reactions rates for various substrates. Protein Eng. 23: 929-933. https://doi.org/10.1093/protein/gzq089
  79. Sabu A, Nampoothiri KM, Pandey A. 2005. L-Glutaminase as a therapeutic enzyme of microbial origin, pp. 75-90. Microbial Enzymes and Biotransformations.
  80. Smitha M, Singh S, Singh R. 2017. Microbial biotransformation: a process for chemical alterations. J. Bacteriol. Mycol. Open Access. 4: 00085.
  81. Hegazy M-EF, Mohamed TA, ElShamy AI, Abou-El-Hamd HM, Mahalel UA, Reda EH, et al. 2015. Microbial biotransformation as a tool for drug development based on natural products from mevalonic acid pathway: a review. J. Adv. Res. 6: 17-33. https://doi.org/10.1016/j.jare.2014.11.009
  82. Patra S. 2007. Biotransformation of caffeine to value added products. Ph.D.Thesis, University of Mysore.
  83. Gopinath SC, Anbu P, Arshad M, Lakshmipriya T, Voon CH, Hashim U, et al. 2017. Biotechnological processes in microbial amylase production. Biomed. Res. Int. 2017: 1272193.
  84. Schauer F, Borriss R. 2004. Biocatalysis and Biotransformation, pp. 237-306. In Tkacz JS, Lange L (eds.), Advances in Fungal Biotechnology for Industry, Agriculture, and Medicine, Ed. Springer US, Boston, MA
  85. Milner SE, Maguire AR. 2012. Recent trends in whole cell and isolated enzymes in enantioselective synthesis. Review Accounts 321-382.
  86. Li Z, Held M, Panke S, Schmid A, Mathys R, Witholt B. 2007. Biocatalysis for Industrial Green Chemistry, pp. 281-298. Methods and reagents for green chemistry: an introduction, Ed. John Wiley & Sons, Inc.
  87. Boaventura MAD, Lopes RF, Takahashi JA. 2004. Microorganisms as tools in modern chemistry: the biotransformation of 3-indolylacetonitrile and tryptamine by fungi. Braz. J. Microbiol. 35: 345-347. https://doi.org/10.1590/S1517-83822004000300014

Cited by

  1. Biochemical Properties of Tyrosinase from Aspergillus terreus and Penicillium copticola; Undecanoic Acid from Aspergillus flavus, an Endophyte of Moringa oleifera, Is a Novel Potent Tyrosinase Inhibit vol.26, pp.5, 2020, https://doi.org/10.3390/molecules26051309
  2. Microbial Tyrosinase: Biochemical, Molecular Properties and Pharmaceutical Applications vol.14, pp.3, 2020, https://doi.org/10.13005/bpj/2229