References
- Stanworth RD, Jones TH. 2008. Testosterone for the aging male; current evidence and recommended practice. Clin. Interv. Aging. 3: 25-44. https://doi.org/10.2147/CIA.S190
- McBride JA, Carson CC 3rd, Coward RM. 2016. Testosterone deficiency in the aging male. Ther. Adv. Urol. 8: 47-60. https://doi.org/10.1177/1756287215612961
- Kandeel FR, Koussa VK, Swerdloff RS. 2001. Male sexual function and its disorders: physiology, pathophysiology, clinical investigation, and treatment. Endocr. Rev. 22: 342-388. https://doi.org/10.1210/er.22.3.342
- Yeap BB. 2009. Testosterone and ill-health in aging men. Nat. Clin. Pract. Endocrinol. Metab. 5: 113-121. https://doi.org/10.1038/ncpendmet1050
- McMahon CG, Shusterman N, Cohen B. 2017. Pharmacokinetics, clinical efficacy, safety profile, and patient-reported outcomes in patients receiving subcutaneous testosterone pellets 900 mg for treatment of symptoms associated with androgen deficiency. J. Sex. Med. 14: 883-890. https://doi.org/10.1016/j.jsxm.2017.04.734
- Grossmann M, Matsumoto AM. 2017. A perspective on middle-aged and older men with functional hypogonadism: Focus on holistic management. J. Clin. Endocrinol. Metab. 102: 1067-1075. https://doi.org/10.1210/jc.2016-3580
- Carruthers M, Cathcart P, Feneley MR. 2015. Evolution of testosterone treatment over 25 years: symptom responses, endocrine profiles and cardiovascular changes. Aging Male 18: 217-227. https://doi.org/10.3109/13685538.2015.1048218
- Liu PY, Swerdloff RS, Veldhuis JD. 2004. The rationale, efficacy and safety of androgen therapy in older men: future research and current practice recommendations. J. Clin. Endocrinol. Metab. 89: 4789-4796. https://doi.org/10.1210/jc.2004-0807
- Rajfer J. 2003. Decreased testosterone in the aging male: summary and conclusions. Rev. Urol. 5 Suppl 1: S49-S50.
- Maeda N, Tanaka E, Suzuki T, Okumura K, Nomura S, Miyasho T, et al. 2013. Accurate determination of tissue steroid hormones, precursors and conjugates in adult male rat. J. Biochem. 153: 63-71. https://doi.org/10.1093/jb/mvs121
- Mukai H, Takata N, Ishii HT, Tanabe N, Hojo Y, Furukawa A, et al. 2006. Hippocampal synthesis of estrogens and androgens which are paracrine modulators of synaptic plasticity: synaptocrinology. Neuroscience 138: 757-764. https://doi.org/10.1016/j.neuroscience.2005.09.010
- Hojo Y, Murakami G, Mukai H, Higo S, Hatanaka Y, Ogiue-Ikeda M, et al. 2008. Estrogen synthesis in the brain-role in synaptic plasticity and memory. Mol. Cell Endocrinol. 290: 31-43. https://doi.org/10.1016/j.mce.2008.04.017
- Lynch G, Baudry M. 2015. Brain and memory: Old arguments and new perspectives. Brain Res. 1621: 1-4. https://doi.org/10.1016/j.brainres.2014.12.052
- Luine V, Frankfurt M. 2015. Introduction to the special issue estradiol and cognition: Molecules to mind. Horm. Behav. 74: 1-3. https://doi.org/10.1016/j.yhbeh.2015.08.011
- Mukai H, Kimoto T, Hojo Y, Kawato S, Murakami G, Higo S, et al. 2010. Modulation of synaptic plasticity by brain estrogen in the hippocampus. Biochim. Biophys. Acta 1800: 1030-1044. https://doi.org/10.1016/j.bbagen.2009.11.002
- Kampen DL, Sherwin BB. 1996. Estradiol is related to visual memory in healthy young men. Behav. Neurosci. 110: 613-617. https://doi.org/10.1037/0735-7044.110.3.613
- Bals-Pratsch M, Langer K, Place VA, Nieschlag E. 1986. Substitution therapy of hypogonadal men with transdermal testosterone over one year. Acta Endocrinol.(Copenh) 118: 7-13. https://doi.org/10.1530/acta.0.1180007
- Hojo Y, Munetomo A, Mukai H, Ikeda M, Sato R, Hatanaka Y, et al. 2015. Estradiol rapidly modulates spinogenesis in hippocampal dentate gyrus: Involvement of kinase networks. Horm. Behav. 74: 149-156. https://doi.org/10.1016/j.yhbeh.2015.06.008
- Kawato S. 2016. Hippocampus-synthesized androgens and estrogens enhance memory formation. Seikagaku 88: 342-353.
- Melcangi RC, Panzica G, Garcia-Segura LM. 2011. Neuroactive steroids: focus on human brain. Neuroscience 191: 1-5. https://doi.org/10.1016/j.neuroscience.2011.06.024
- Schule C, Eser D, Baghai TC, Nothdurfter C, Kessler JS, Rupprecht R. 2011. Neuroactive steroids in affective disorders: target for novel antidepressant or anxiolytic drugs?. Neuroscience 191: 55-77. https://doi.org/10.1016/j.neuroscience.2011.03.025
- Casadesus G. 2010. Special issue on estrogen actions in the brain. Biochim. Biophys. Acta 1800: 1029. https://doi.org/10.1016/j.bbagen.2010.08.002
-
Vasconsuelo A, Milanesi L, Boland R. 2013. Actions of 17
${\beta}$ -estradiol and testosterone in the mitochondria and their implications in aging. Ageing Res. Rev. 12: 907-917. https://doi.org/10.1016/j.arr.2013.09.001 - Stanton SJ. 2017. The role of testosterone and estrogen in consumer behavior and social & economic decision making: a review. Horm. Behav. 92: 155-163. https://doi.org/10.1016/j.yhbeh.2016.11.006
- Coen CW. 2015. 60 years of neuroendocrinology: Celebrating the brain's other output-input system and the monograph that defined neuroendocrinology. J. Endocrinol. 226: E3-E6. https://doi.org/10.1530/JOE-15-0251
- Trost LW, Mulhall JP. 2016. Challenges in testosterone measurement, data interpretation, and methodological appraisal of interventional trials. J. Sex. Med. 13: 1029-1046. https://doi.org/10.1016/j.jsxm.2016.04.068
- Frankenfeld SP, de Oliveira LP, Ignacio DL, Coelho RG, Mattos MN, Ferreira AC, et al. 2014. Nandrolone decanoate inhibits gluconeogenesis and decreases fasting glucose in Wistar male rats. J. Endocrinol. 220: 143-153. https://doi.org/10.1530/JOE-13-0259
- Yamaguchi T, Lee JH, Lim AR, Sim JS, Yu EJ, Oh TJ. 2018. Bioconversion of corticosterone into corticosterone-glucoside by glucosyltransferase. Molecules 23: E1783.
- Pellissier H. 2004. The glycosylation of steroids. Tetrahedron. 60: 5123-5162. https://doi.org/10.1016/j.tet.2004.04.009
- Yang B, Yang W, Ramadan S, Huang X. 2018. Pre-activation-based stereoselective glycosylations. Eur. J. Org. Chem. 2018: 1075-1096. https://doi.org/10.1002/ejoc.201701579
- Vojtiskova M, Draber P, Veres K, Pokorna Z. 1982. Biological activity of hormonally active and non-active androgen derivatives. Int. J. Immunopharmacol. 4: 469-474. https://doi.org/10.1016/0192-0561(82)90022-4
- Collins DC, Williamson DG, Layne DS. 1970. Steroid glucosides. Enzymatic synthesis by a partially purified transferase from rabbit liver microsomes. J. Biol. Chem. 245: 873-876. https://doi.org/10.1016/S0021-9258(18)63346-0
- Malik V, Zhang M, Dover LG, Northen JS, Flinn A, Perry JJ, et al. 2013. Sterol 3b-glucosyltransferase biocatalysts with a range of selectivities, including selectivity for testosterone. Mol. BioSyst. 9: 2816-2822. https://doi.org/10.1039/c3mb70303g
- Gurung RB, Kim EH, Oh TJ, Sohng JK. 2013. Enzymatic synthesis of apigenin glucosides by glucosyltransferase (YjiC) from Bacillus licheniformis DSM 13. Mol. Cells 36: 355-361. https://doi.org/10.1007/s10059-013-0164-0
- Pandey RP, Gurung RB, Parajuli P, Koirala N, Tuoile T, Sohng JK. 2014. Assessing acceptor substrate promiscuity of YjiC-mediated glycosylation toward flavonoids. Carbohydr. Res. 393: 26-31. https://doi.org/10.1016/j.carres.2014.03.011
- Bergink EW, Janssen PS, Turpijn EW, van der Vies J. 1985. Comparison of the receptor binding properties of nandrolone and testosterone under in vitro and in vivo conditions. J. Steroid Biochem. 22: 831-836. https://doi.org/10.1016/0022-4731(85)90293-6
- Roche E.B. 2016. Book Reviews Sneader W. 2005. Drug Discovery: A History. John Wiley & Sons, Ltd. J. Med. Chem. 5023-5024.
- Mooradian AD, Morley JE, Korenman SG. 1987. Biological actions of androgen. Endoc. Rev. 8: 1-28. https://doi.org/10.1210/edrv-8-1-1
- Bassil N, Alkaade S, Morley JE. 2009. The benefits and risks of testosterone replacement therapy: a review. Ther. Clin. Risk Manag. 5: 427-448.
- Tuck S, Francis R. 2009. Testosterone, bone and osteoporosis. Front. Horm. Res. 37: 123-132. https://doi.org/10.1159/000176049
-
Baldassarre M, Giannone FA, Foschini MP, Battaglia C, Busacchi P, Venturoli S, et al. 2013. Effects of long-term high dose testosterone administration on vaginal epithelium structure and estrogen receptor-
${\alpha}$ and -${\beta}$ expression of young women. Int. J. Impot. Res. 25: 172-177. https://doi.org/10.1038/ijir.2013.9 - Reilly DT. 2012. Ask the doctor. I'm in my late 70s and have been getting about four cortisone shots a year for the past several years for the arthritis in my left knee. They really help with the pain, but I've heard that long-term, there could be bad side effects. Should I be worried? Harv. Health Lett. 37: 99.
- Matthews E, Brassington R, Kuntzer T, Jichi F, Manzur AY. 2016. Corticosteroids for the treatment of Duchenne muscular dystrophy. Cochrane Database Syst. Rev. 5(5): CD003725.
- Barnes PJ. 2014. Glucocorticoids. Chem. Immunol. Allergy 100: 311-316. https://doi.org/10.1159/000359984
- Park JW, Curtis JR, Moon J, Song YW, Kim S, Lee EB. 2018. Prophylactic effect of trimethoprim-sulfamethoxazole for pneumocystis pneumonia in patients with rheumatic diseases exposed to prolonged high-dose glucocorticoids. Ann. Rheum. Dis. 77: 644-649. https://doi.org/10.1136/annrheumdis-2017-211796
- Buttgereit F, Gibofsky A. 2013. Delayed-release prednisone - a new approach to an old therapy. Exp. Opin. Pharmacother. 14: 1097-1106. https://doi.org/10.1517/14656566.2013.782001
- Wood JP, Mammone T, Chidlow G, Greenwell T, Casson RJ. 2012. Mitochondrial inhibition in rat retinal cell cultures as a model of metabolic compromise: mechanisms of injury and neuroprotection. Invest. Ophthalmol. Vis. Sci. 53: 4897-4909. https://doi.org/10.1167/iovs.11-9171
-
Han G, Casson RJ, Chidlow G, Wood JP. 2014. The mitochondrial complex I inhibitor rotenone induces endoplasmic reticulum stress and activation of GSK-
$3{\beta}$ in cultured rat retinal cells. Invest. Ophthalmol. Vis. Sci. 55: 5616-5628. https://doi.org/10.1167/iovs.14-14371 - Esteve-Rudd J, Fernandez-Sanchez L, Lax P, De Juan E, Martin-Nieto J, Cuenca N. 2011. Rotenone induces degeneration of photoreceptors and impairs the dopaminergic system in the rat retina. Neurobiol. Dis. 44: 102-115. https://doi.org/10.1016/j.nbd.2011.06.009
- Radad K, Rausch WD, Gille G. 2006. Rotenone induces cell death in primary dopaminergic culture by increasing ROS production and inhibiting mitochondrial respiration. Neurochem. Int. 49: 379-386. https://doi.org/10.1016/j.neuint.2006.02.003