DOI QR코드

DOI QR Code

Enzymatic Synthesis of Anabolic Steroid Glycosides by Glucosyltransferase from Terribacillus sp. PAMC 23288

  • Yu, Eun-Ji (Department of Life Science and Biochemical Engineering, SunMoon University) ;
  • Yamaguchi, Tokutaro (Department of Life Science and Biochemical Engineering, SunMoon University) ;
  • Lee, Joo-Ho (Genome-Based BioIT Convergence Institute) ;
  • Lim, A-Rang (Korea Institute of Oriental Medicine) ;
  • Lee, Jun Hyuck (Unit of Research for Practical Application, Korea Polar Research Institute) ;
  • Park, Hyun (Division of Biotechnology, College of Life Science and Biotechnology, Korea University) ;
  • Oh, Tae-Jin (Department of Life Science and Biochemical Engineering, SunMoon University)
  • Received : 2019.11.26
  • Accepted : 2019.12.24
  • Published : 2020.04.28

Abstract

The application of steroids has steadily increased thanks to their therapeutic effects. However, alternatives are required due their severe side effects; thus, studies on the activities of steroid derivatives are underway. Sugar derivatives of nandrolone, which is used to treat breast cancer, as well as cortisone and prednisone, which reduce inflammation, pain, and edema, are unknown. We linked O-glucose to nandrolone and testosterone using UDP-glucosyltransferase (UGT-1) and, then, tested their bioactivities in vitro. Analysis by NMR showed that the derivatives were 17β-nandrolone β-ᴅ-glucose and 17β-testosterone β-ᴅ-glucose, respectively. The viability was higher and cytotoxicity was evident in PC12 cells incubated with rotenone and, testosterone derivatives, compared to the controls. SH-SY5Y cells incubated with H2O2 and nandrolone derivatives remained viable and cytotoxicity was attenuated. Both derivatives enhanced neuronal protective effects and increased the amounts of cellular ATP.

Keywords

References

  1. Stanworth RD, Jones TH. 2008. Testosterone for the aging male; current evidence and recommended practice. Clin. Interv. Aging. 3: 25-44. https://doi.org/10.2147/CIA.S190
  2. McBride JA, Carson CC 3rd, Coward RM. 2016. Testosterone deficiency in the aging male. Ther. Adv. Urol. 8: 47-60. https://doi.org/10.1177/1756287215612961
  3. Kandeel FR, Koussa VK, Swerdloff RS. 2001. Male sexual function and its disorders: physiology, pathophysiology, clinical investigation, and treatment. Endocr. Rev. 22: 342-388. https://doi.org/10.1210/er.22.3.342
  4. Yeap BB. 2009. Testosterone and ill-health in aging men. Nat. Clin. Pract. Endocrinol. Metab. 5: 113-121. https://doi.org/10.1038/ncpendmet1050
  5. McMahon CG, Shusterman N, Cohen B. 2017. Pharmacokinetics, clinical efficacy, safety profile, and patient-reported outcomes in patients receiving subcutaneous testosterone pellets 900 mg for treatment of symptoms associated with androgen deficiency. J. Sex. Med. 14: 883-890. https://doi.org/10.1016/j.jsxm.2017.04.734
  6. Grossmann M, Matsumoto AM. 2017. A perspective on middle-aged and older men with functional hypogonadism: Focus on holistic management. J. Clin. Endocrinol. Metab. 102: 1067-1075. https://doi.org/10.1210/jc.2016-3580
  7. Carruthers M, Cathcart P, Feneley MR. 2015. Evolution of testosterone treatment over 25 years: symptom responses, endocrine profiles and cardiovascular changes. Aging Male 18: 217-227. https://doi.org/10.3109/13685538.2015.1048218
  8. Liu PY, Swerdloff RS, Veldhuis JD. 2004. The rationale, efficacy and safety of androgen therapy in older men: future research and current practice recommendations. J. Clin. Endocrinol. Metab. 89: 4789-4796. https://doi.org/10.1210/jc.2004-0807
  9. Rajfer J. 2003. Decreased testosterone in the aging male: summary and conclusions. Rev. Urol. 5 Suppl 1: S49-S50.
  10. Maeda N, Tanaka E, Suzuki T, Okumura K, Nomura S, Miyasho T, et al. 2013. Accurate determination of tissue steroid hormones, precursors and conjugates in adult male rat. J. Biochem. 153: 63-71. https://doi.org/10.1093/jb/mvs121
  11. Mukai H, Takata N, Ishii HT, Tanabe N, Hojo Y, Furukawa A, et al. 2006. Hippocampal synthesis of estrogens and androgens which are paracrine modulators of synaptic plasticity: synaptocrinology. Neuroscience 138: 757-764. https://doi.org/10.1016/j.neuroscience.2005.09.010
  12. Hojo Y, Murakami G, Mukai H, Higo S, Hatanaka Y, Ogiue-Ikeda M, et al. 2008. Estrogen synthesis in the brain-role in synaptic plasticity and memory. Mol. Cell Endocrinol. 290: 31-43. https://doi.org/10.1016/j.mce.2008.04.017
  13. Lynch G, Baudry M. 2015. Brain and memory: Old arguments and new perspectives. Brain Res. 1621: 1-4. https://doi.org/10.1016/j.brainres.2014.12.052
  14. Luine V, Frankfurt M. 2015. Introduction to the special issue estradiol and cognition: Molecules to mind. Horm. Behav. 74: 1-3. https://doi.org/10.1016/j.yhbeh.2015.08.011
  15. Mukai H, Kimoto T, Hojo Y, Kawato S, Murakami G, Higo S, et al. 2010. Modulation of synaptic plasticity by brain estrogen in the hippocampus. Biochim. Biophys. Acta 1800: 1030-1044. https://doi.org/10.1016/j.bbagen.2009.11.002
  16. Kampen DL, Sherwin BB. 1996. Estradiol is related to visual memory in healthy young men. Behav. Neurosci. 110: 613-617. https://doi.org/10.1037/0735-7044.110.3.613
  17. Bals-Pratsch M, Langer K, Place VA, Nieschlag E. 1986. Substitution therapy of hypogonadal men with transdermal testosterone over one year. Acta Endocrinol.(Copenh) 118: 7-13. https://doi.org/10.1530/acta.0.1180007
  18. Hojo Y, Munetomo A, Mukai H, Ikeda M, Sato R, Hatanaka Y, et al. 2015. Estradiol rapidly modulates spinogenesis in hippocampal dentate gyrus: Involvement of kinase networks. Horm. Behav. 74: 149-156. https://doi.org/10.1016/j.yhbeh.2015.06.008
  19. Kawato S. 2016. Hippocampus-synthesized androgens and estrogens enhance memory formation. Seikagaku 88: 342-353.
  20. Melcangi RC, Panzica G, Garcia-Segura LM. 2011. Neuroactive steroids: focus on human brain. Neuroscience 191: 1-5. https://doi.org/10.1016/j.neuroscience.2011.06.024
  21. Schule C, Eser D, Baghai TC, Nothdurfter C, Kessler JS, Rupprecht R. 2011. Neuroactive steroids in affective disorders: target for novel antidepressant or anxiolytic drugs?. Neuroscience 191: 55-77. https://doi.org/10.1016/j.neuroscience.2011.03.025
  22. Casadesus G. 2010. Special issue on estrogen actions in the brain. Biochim. Biophys. Acta 1800: 1029. https://doi.org/10.1016/j.bbagen.2010.08.002
  23. Vasconsuelo A, Milanesi L, Boland R. 2013. Actions of 17 ${\beta}$-estradiol and testosterone in the mitochondria and their implications in aging. Ageing Res. Rev. 12: 907-917. https://doi.org/10.1016/j.arr.2013.09.001
  24. Stanton SJ. 2017. The role of testosterone and estrogen in consumer behavior and social & economic decision making: a review. Horm. Behav. 92: 155-163. https://doi.org/10.1016/j.yhbeh.2016.11.006
  25. Coen CW. 2015. 60 years of neuroendocrinology: Celebrating the brain's other output-input system and the monograph that defined neuroendocrinology. J. Endocrinol. 226: E3-E6. https://doi.org/10.1530/JOE-15-0251
  26. Trost LW, Mulhall JP. 2016. Challenges in testosterone measurement, data interpretation, and methodological appraisal of interventional trials. J. Sex. Med. 13: 1029-1046. https://doi.org/10.1016/j.jsxm.2016.04.068
  27. Frankenfeld SP, de Oliveira LP, Ignacio DL, Coelho RG, Mattos MN, Ferreira AC, et al. 2014. Nandrolone decanoate inhibits gluconeogenesis and decreases fasting glucose in Wistar male rats. J. Endocrinol. 220: 143-153. https://doi.org/10.1530/JOE-13-0259
  28. Yamaguchi T, Lee JH, Lim AR, Sim JS, Yu EJ, Oh TJ. 2018. Bioconversion of corticosterone into corticosterone-glucoside by glucosyltransferase. Molecules 23: E1783.
  29. Pellissier H. 2004. The glycosylation of steroids. Tetrahedron. 60: 5123-5162. https://doi.org/10.1016/j.tet.2004.04.009
  30. Yang B, Yang W, Ramadan S, Huang X. 2018. Pre-activation-based stereoselective glycosylations. Eur. J. Org. Chem. 2018: 1075-1096. https://doi.org/10.1002/ejoc.201701579
  31. Vojtiskova M, Draber P, Veres K, Pokorna Z. 1982. Biological activity of hormonally active and non-active androgen derivatives. Int. J. Immunopharmacol. 4: 469-474. https://doi.org/10.1016/0192-0561(82)90022-4
  32. Collins DC, Williamson DG, Layne DS. 1970. Steroid glucosides. Enzymatic synthesis by a partially purified transferase from rabbit liver microsomes. J. Biol. Chem. 245: 873-876. https://doi.org/10.1016/S0021-9258(18)63346-0
  33. Malik V, Zhang M, Dover LG, Northen JS, Flinn A, Perry JJ, et al. 2013. Sterol 3b-glucosyltransferase biocatalysts with a range of selectivities, including selectivity for testosterone. Mol. BioSyst. 9: 2816-2822. https://doi.org/10.1039/c3mb70303g
  34. Gurung RB, Kim EH, Oh TJ, Sohng JK. 2013. Enzymatic synthesis of apigenin glucosides by glucosyltransferase (YjiC) from Bacillus licheniformis DSM 13. Mol. Cells 36: 355-361. https://doi.org/10.1007/s10059-013-0164-0
  35. Pandey RP, Gurung RB, Parajuli P, Koirala N, Tuoile T, Sohng JK. 2014. Assessing acceptor substrate promiscuity of YjiC-mediated glycosylation toward flavonoids. Carbohydr. Res. 393: 26-31. https://doi.org/10.1016/j.carres.2014.03.011
  36. Bergink EW, Janssen PS, Turpijn EW, van der Vies J. 1985. Comparison of the receptor binding properties of nandrolone and testosterone under in vitro and in vivo conditions. J. Steroid Biochem. 22: 831-836. https://doi.org/10.1016/0022-4731(85)90293-6
  37. Roche E.B. 2016. Book Reviews Sneader W. 2005. Drug Discovery: A History. John Wiley & Sons, Ltd. J. Med. Chem. 5023-5024.
  38. Mooradian AD, Morley JE, Korenman SG. 1987. Biological actions of androgen. Endoc. Rev. 8: 1-28. https://doi.org/10.1210/edrv-8-1-1
  39. Bassil N, Alkaade S, Morley JE. 2009. The benefits and risks of testosterone replacement therapy: a review. Ther. Clin. Risk Manag. 5: 427-448.
  40. Tuck S, Francis R. 2009. Testosterone, bone and osteoporosis. Front. Horm. Res. 37: 123-132. https://doi.org/10.1159/000176049
  41. Baldassarre M, Giannone FA, Foschini MP, Battaglia C, Busacchi P, Venturoli S, et al. 2013. Effects of long-term high dose testosterone administration on vaginal epithelium structure and estrogen receptor-${\alpha}$ and -${\beta}$ expression of young women. Int. J. Impot. Res. 25: 172-177. https://doi.org/10.1038/ijir.2013.9
  42. Reilly DT. 2012. Ask the doctor. I'm in my late 70s and have been getting about four cortisone shots a year for the past several years for the arthritis in my left knee. They really help with the pain, but I've heard that long-term, there could be bad side effects. Should I be worried? Harv. Health Lett. 37: 99.
  43. Matthews E, Brassington R, Kuntzer T, Jichi F, Manzur AY. 2016. Corticosteroids for the treatment of Duchenne muscular dystrophy. Cochrane Database Syst. Rev. 5(5): CD003725.
  44. Barnes PJ. 2014. Glucocorticoids. Chem. Immunol. Allergy 100: 311-316. https://doi.org/10.1159/000359984
  45. Park JW, Curtis JR, Moon J, Song YW, Kim S, Lee EB. 2018. Prophylactic effect of trimethoprim-sulfamethoxazole for pneumocystis pneumonia in patients with rheumatic diseases exposed to prolonged high-dose glucocorticoids. Ann. Rheum. Dis. 77: 644-649. https://doi.org/10.1136/annrheumdis-2017-211796
  46. Buttgereit F, Gibofsky A. 2013. Delayed-release prednisone - a new approach to an old therapy. Exp. Opin. Pharmacother. 14: 1097-1106. https://doi.org/10.1517/14656566.2013.782001
  47. Wood JP, Mammone T, Chidlow G, Greenwell T, Casson RJ. 2012. Mitochondrial inhibition in rat retinal cell cultures as a model of metabolic compromise: mechanisms of injury and neuroprotection. Invest. Ophthalmol. Vis. Sci. 53: 4897-4909. https://doi.org/10.1167/iovs.11-9171
  48. Han G, Casson RJ, Chidlow G, Wood JP. 2014. The mitochondrial complex I inhibitor rotenone induces endoplasmic reticulum stress and activation of GSK-$3{\beta}$ in cultured rat retinal cells. Invest. Ophthalmol. Vis. Sci. 55: 5616-5628. https://doi.org/10.1167/iovs.14-14371
  49. Esteve-Rudd J, Fernandez-Sanchez L, Lax P, De Juan E, Martin-Nieto J, Cuenca N. 2011. Rotenone induces degeneration of photoreceptors and impairs the dopaminergic system in the rat retina. Neurobiol. Dis. 44: 102-115. https://doi.org/10.1016/j.nbd.2011.06.009
  50. Radad K, Rausch WD, Gille G. 2006. Rotenone induces cell death in primary dopaminergic culture by increasing ROS production and inhibiting mitochondrial respiration. Neurochem. Int. 49: 379-386. https://doi.org/10.1016/j.neuint.2006.02.003