References
- Kalia VC. 2013. Quorum sensing inhibitors: An overview. Biotechnol. Adv. 31: 224-245. https://doi.org/10.1016/j.biotechadv.2012.10.004
- Kalia VC, Patel SKS, Kang YC, Lee J-K. 2019. Quorum sensing inhibitors as antipathogens: biotechnological applications. Biotechnol. Adv. 37: 68-90. https://doi.org/10.1016/j.biotechadv.2018.11.006
- Kalia VC. 2014. In search of versatile organisms for quorum-sensing inhibitors: acyl homoserine lactones (AHL)-acylase and AHLlactonase. FEMS Microbiol. Lett. 359: 143-143. https://doi.org/10.1111/1574-6968.12585
- Kalia VC. 2014. Microbes, antimicrobials and resistance: The battle goes on. Indian J. Microbiol. 54: 1-2. https://doi.org/10.1007/s12088-013-0443-7
- Kalia VC, Purohit HJ. 2011. Quenching the quorum sensing system: potential antibacterial drug targets. Crit. Rev. Microbiol. 37: 121-140. https://doi.org/10.3109/1040841X.2010.532479
- Kumar P, Patel SKS, Lee J-K, Kalia VC. 2013. Extending the limits of Bacillus for novel biotechnological applications. Biotechnol. Adv. 31: 1543-1561. https://doi.org/10.1016/j.biotechadv.2013.08.007
- Kalia VC, Raju SC, Purohit HJ. 2011. Genomic analysis reveals versatile organisms for quorum quenching enzymes: Acyl- Homoserine lactone-Acylase and -Lactonase. Open Microbiol. J. 3: 1-11. https://doi.org/10.2174/1874285800903010001
- Huma N, Shankar P, Kushwah J, Bhushan A, Joshi J, Mukherjee T, et al. 2011. Diversity and polymorphism in AHL-lactonase gene (aiiA) of Bacillus. J. Microbiol. Biotechnol. 21: 1001-1011. https://doi.org/10.4014/jmb.1105.05056
- Kostylev M, Kim DY, Smalley NE, Salukhe I, Greenberg EP, Dandekar AA. 2019. Evolution of the Pseudomonas aeruginosa quorumsensing hierarchy. Proc. Natl. Acad. Sci. USA 116: 7027-7032. https://doi.org/10.1073/pnas.1819796116
- Lee K, Yoon SS. 2017. Pseudomonas aeruginosa biofilm, a programmed bacterial life for fitness. J. Microbiol. Biotechnol. 27: 1053-1064. https://doi.org/10.4014/jmb.1611.11056
- Yong Y-C, Zhong J-J. 2013. Impacts of quorum sensing on microbial metabolism and human health, pp. 25-61. In Zhong J-J (ed.), Future Trends in Biotechnology, Advances in Biochemical Engineering/Biotechnology, vol. 131. Springer, Berlin, Heidelberg.
- Mulcahy LR, Isabella VM, Lewis K. 2014. Pseudomonas aeruginosa biofilms in disease. Microb. Ecol. 68: 1-12. https://doi.org/10.1007/s00248-013-0297-x
- Ding F, Oinuma K-I, Smalley NE, Schaefer AL, Hamwy O, Peter Greenberg E, et al. 2018. The Pseudomonas aeruginosa orphan quorum sensing signal receptor QscR regulates global quorum sensing gene expression by activating a single linked operon. mBio. 9: e01274-18.
- Sun S, Dai X, Sun J, Bu X, Weng C, Li H, Zhu H. 2016. A diketopiperazine factor from Rheinheimera aquimaris QSI02 exhibits antiquorum sensing activity. Sci. Rep. 6: 39637. https://doi.org/10.1038/srep39637
- Kim A-L, Park S-Y, Lee CH, Lee C-H, Lee J-K. 2014. Quorum quenching bacteria isolated from the sludge of a wastewater treatment plant and their application for controlling biofilm formation. J. Microbiol. Biotechnol. 24: 1574-1582. https://doi.org/10.4014/jmb.1407.07009
- Lade H, Paul D, Kweon JH. 2015. Combined effects of curcumin and (-)-epigallocatechin gallate on inhibition of n-acylhomoserine lactone-mediated biofilm formation in wastewater bacteria from membrane bioreactor. J. Microbiol. Biotechnol. 25: 1908-1919. https://doi.org/10.4014/jmb.1506.06010
- Yap PSX, Krishnan T, Chan K-G, Lim SHE. 2015. Antibacterial mode of action of Cinnamomum verum bark essential oil, alone and in combination with piperacillin, against a multi-drug-resistant Escherichia coli strain. J. Microbiol. Biotechnol. 25: 1299-1306. https://doi.org/10.4014/jmb.1407.07054
- Jo SJ, Kwon H, Jeong S-Y, Lee SH, Oh H-S, Yi T, et al . TG. 2016. Effects of quorum quenching on the microbial community of biofilm in an anoxic/oxic MBR for wastewater treatment. J. Microbiol. Biotechnol. 26: 1593-1604. https://doi.org/10.4014/jmb.1604.04070
- Zhang L, Guo Z, Gao H, Peng X, Li Y, Sun S, Lee J-K, et al. 2016. Interaction of Pseudostellaria heterophylla with quorum sensing and quorum quenching bacteria mediated by root exudates in a consecutive monoculture system. J. Microbiol. Biotechnol. 26: 2159-2170. https://doi.org/10.4014/jmb.1607.07073
- Choi H-A, Cheong D-E, Lim H-D, Kim W-H, Ham M-H, Oh M-H, et al. 2017. Antimicrobial and anti-biofilm activities of the methanol extracts of medicinal plants against dental pathogens Streptococcus mutans and Candida albicans. J. Microbiol. Biotechnol. 27: 1242-1248. https://doi.org/10.4014/jmb.1701.01026
- Kang S-Y, Kim B-M, Heo KT, Jang J-H, Kim W-G, Hong Y-S. 2017. Production of bacterial quorum sensing antagonists, caffeoyland feruloyl-HSL, by an artificial biosynthetic pathway. J. Microbiol. Biotechnol. 27: 2104-2111. https://doi.org/10.4014/jmb.1705.05033
- Lee SH, Lee S, Lee K, Nahm CH, Jo SJ, Lee J, et al. 2017. Enhancing the physical properties and lifespan of bacterial quorum quenching media through combination of ionic cross-linking and dehydration. J. Microbiol. Biotechnol. 27: 552-560. https://doi.org/10.4014/jmb.1611.11016
- Wang J, Nong X-H, Zhang X-Y, Xu X-Y, Amin M, Qi S-H. 2017. Screening of anti-biofilm compounds from marine-derived fungi and the effects of secalonic acid D on Staphylococcus aureus biofilm. J. Microbiol. Biotechnol. 27: 1078-1089. https://doi.org/10.4014/jmb.1609.09053
- Ham Y, Kim T-J. 2018. Nitrogen sources inhibit biofilm formation of Xanthomonas oryzae pv. oryzae. J. Microbiol. Biotechnol. 28: 2071-2078. https://doi.org/10.4014/jmb.1807.08025
- Ahmad MS, El-Gendy AO, Ahmed RR, Hassan HM, El-Kabbany HM, Merdash AG. 2017. Exploring the antimicrobial and antitumor potentials of Streptomyces sp. AGM12-1 isolated from Egyptian soil. Front. Microbiol. 8: 438.
- Vasavi HS, Arun AB, Rekha PD. 2016. Anti-quorum sensing activity of flavonoid-rich fraction from Centella asiatica L. against Pseudomonas aeruginosa PAO1. J. Microbiol. Immunol. Infect. 49: 8-15. https://doi.org/10.1016/j.jmii.2014.03.012
- Miao L, Xu J, Yao Z, Jiang Y, Zhou H, Jiang W, Dong K. 2017. The anti-quorum sensing activity and bioactive substance of a marine derived Streptomyces. Biotechnol. Biotechnol. Equip. 31: 1007-1015. https://doi.org/10.1080/13102818.2017.1348253
- Shukla V, Bhathena Z. 2016. Broad spectrum anti-quorum sensing activity of tannin-rich crude extracts of Indian medicinal plants. Scientifica (Cairo). 2016: 1-8.
- Kalia M, Yadav VK, Singh PK, Sharma D, Pandey H, Narvi SS, Agarwal V. 2015. Effect of cinnamon oil on quorum sensingcontrolled virulence factors and biofilm formation in Pseudomonas aeruginosa. PLoS One 10: e0135495. https://doi.org/10.1371/journal.pone.0135495
- Ma Z-P, Song Y, Cai Z-H, Lin Z-J, Lin G-H, Wang Y, et al. 2018. Anti-quorum sensing activities of selected coral symbiotic bacterial extracts from the South China sea. Front. Cell. Infect. Microbiol. 8: 144. https://doi.org/10.3389/fcimb.2018.00144
- Hossain MA, Lee S-J, Park N-H, Mechesso AF, Birhanu BT, Kang J, et al. 2017. Impact of phenolic compounds in the acyl homoserine lactone-mediated quorum sensing regulatory pathways. Sci. Rep. 7: 10618. https://doi.org/10.1038/s41598-017-10997-5
- Musthafa KS, Saroja V, Pandian SK, Ravi AV. 2011. Antipathogenic potential of marine Bacillus sp. SS4 on N-acyl-homoserinelactone-mediated virulence factors production in Pseudomonas aeruginosa (PAO1). J. Biosci. 36: 55-67. https://doi.org/10.1007/s12038-011-9011-7
- Husain FM, Ahmad I, Al-thubiani AS, Abulreesh HH, AlHazza IM, Aqil F. 2017. Leaf extracts of Mangifera indica L. inhibit quorum sensing - regulated production of virulence factors and biofilm in test bacteria. Front. Microbiol. 8: 1-12.
- Adonizio A, Kong K-F, Mathee K. 2008. Inhibition of quorum sensing-controlled virulence factor production in Pseudomonas aeruginosa by South Florida plant extracts. Antimicrob. Agents Chemother. 52: 198-203. https://doi.org/10.1128/AAC.00612-07
- Li T, Mei Y, He B, Sun X, Li J. 2019. Reducing quorum sensing-mediated virulence factor expression and biofilm formation in hafnia alvei by using the potential quorum sensing inhibitor L-carvone. Front. Microbiol. 9: 3324. https://doi.org/10.3389/fmicb.2018.03324
- Yin H, Deng Y, Wang H, Liu W, Zhuang X, Chu W. 2015. Tea polyphenols as an antivirulence compound disrupt quorum-sensing regulated pathogenicity of Pseudomonas aeruginosa. Sci. Rep. 5: 16158. https://doi.org/10.1038/srep16158
- Lee J-H, Kim Y-G, Yong Ryu S, Lee J. 2016. Calcium-chelating alizarin and other anthraquinones inhibit biofilm formation and the hemolytic activity of Staphylococcus aureus. Sci. Rep. 6: 19267. https://doi.org/10.1038/srep19267
- Luo J, Dong B, Wang K, Cai S, Liu T, Cheng X, et al. 2017. Baicalin inhibits biofilm formation, attenuates the quorum sensingcontrolled virulence and enhances Pseudomonas aeruginosa clearance in a mouse peritoneal implant infection model. PLoS One 12: e0176883. https://doi.org/10.1371/journal.pone.0176883
- Gopu V, Meena CK, Shetty PH. 2015. Quercetin influences quorum sensing in food borne bacteria: in-vitro and in-silico evidence. PLoS One 10: e0134684. https://doi.org/10.1371/journal.pone.0134684
- Singh G, Kumar P. 2013. Extraction, gas chromatography-mass spectrometry analysis and screening of fruits of Terminalia chebula Retz. for its antimicrobial potential. Pharmacognosy Res. 5: 162. https://doi.org/10.4103/0974-8490.112421
-
Lovell SC, Davis IW, Arendall WB, de Bakker PIW, Word JM, Prisant MG, et al. 2003. Structure validation by
$C{\alpha}$ geometry:$\phi$ ,$\psi$ and$C{\beta}$ deviation. Proteins 50: 437-450. https://doi.org/10.1002/prot.10286 - Husain FM, Ahmad I, Baig MH, Khan MS, Khan MS, Hassan I, et al. 2016. Broad-spectrum inhibition of AHL-regulated virulence factors and biofilms by sub-inhibitory concentrations of ceftazidime. RSC Adv. 6: 27952-27962. https://doi.org/10.1039/c6ra02704k
- Friesner RA, Murphy RB, Repasky MP, Frye LL, Greenwood JR, Halgren TA, et al. 2006. Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. J. Med. Chem. 49: 6177-6196. https://doi.org/10.1021/jm051256o
- Abraham MJ, Murtola T, Schulz R, Pall S, Smith JC, Hess B, et al. 2015. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 2: 19-25.
- Rajkumari J, Borkotoky S, Reddy D, Mohanty SK, Kumavath R, Murali A, et al. 2019. Anti-quorum sensing and anti-biofilm activity of 5-hydroxymethylfurfural against Pseudomonas aeruginosa PAO1: Insights from in vitro, in vivo and in silico studies. Microbiol. Res. 226: 19-26. https://doi.org/10.1016/j.micres.2019.05.001
- Hnamte S, Parasuraman P, Ranganathan S, Ampasala DR, Reddy D, Kumavath RN, et al. 2019. Mosloflavone attenuates the quorum sensing controlled virulence phenotypes and biofilm formation in Pseudomonas aeruginosa PAO1: In vitro, in vivo and in silico approach. Microb. Pathog. 131: 128-134. https://doi.org/10.1016/j.micpath.2019.04.005
- Rutherford ST, Bassler BL. 2012. Bacterial quorum sensing: its role in virulence and possibilities for its control. Cold Spring Harb. Perspect. Med. 2: a012427. https://doi.org/10.1101/cshperspect.a012427
- Hussain MS, Oh D-H. 2018. Impact of the isolation source on the biofilm formation characteristics of Bacillus cereus. J. Microbiol. Biotechnol. 28: 77-86. https://doi.org/10.4014/jmb.1707.07023
- Jin W, Lin H, Gao H, Guo Z, Li J, Xu Q, et al. 2019. N-acyl-homoserine lactone quorum sensing switch from acidogenesis to solventogenesis during the fermentation process in Serratia marcescens MG1. J. Microbiol. Biotechnol. 29: 596-606. https://doi.org/10.4014/jmb.1810.10026
- Lim ES, Kim J-S. 2017. Role of eptC in biofilm formation by Campylobacter jejuni NCTC11168 on polystyrene and glass surfaces. J. Microbiol. Biotechnol. 27: 1609-1616. https://doi.org/10.4014/jmb.1610.10046
- Hancer Aydemir D, Cifci G, Aviyente V, Bosgelmez-Tinaz G. 2018. Quorum-sensing inhibitor potential of trans -anethole aganist Pseudomonas aeruginosa. J. Appl. Microbiol. 125: 731-739. https://doi.org/10.1111/jam.13892
- Lindequist U. 2016. Marine-derived pharmaceuticals - challenges and opportunities. Biomol. Ther. (Seoul). 24: 561-571. https://doi.org/10.4062/biomolther.2016.181
- Chen J, Wang B, Lu Y, Guo Y, Sun J, Wei B, Zhang H, Wang H. 2019. Quorum sensing inhibitors from marine microorganisms and their synthetic derivatives. Mar. Drugs. 17: 80. https://doi.org/10.3390/md17020080
- Zhang M, Wang M, Zhu X, Yu W, Gong Q. 2018. Equisetin as potential quorum sensing inhibitor of Pseudomonas aeruginosa. Biotechnol. Lett. 40: 865-870. https://doi.org/10.1007/s10529-018-2527-2
- Sharma D, Pramanik A, Agrawal PK. 2016. Evaluation of bioactive secondary metabolites from endophytic fungus Pestalotiopsis neglecta BAB-5510 isolated from leaves of Cupressus torulosa D.Don. 3 Biotech 6: 210. https://doi.org/10.1007/s13205-016-0518-3
- Koh CL, Sam CK, Yin WF, Tan LY, Krishnan T, Chong YM, et al. 2013. Plant-derived natural products as sources of anti-quorum sensing compounds. Sensors (Basel). 13: 6217-6228. https://doi.org/10.3390/s130506217
Cited by
- Nanostructured Antimicrobial Peptides: Crucial Steps of Overcoming the Bottleneck for Clinics vol.12, 2020, https://doi.org/10.3389/fmicb.2021.710199
- Resistance risk induced by quorum sensing inhibitors and their combined use with antibiotics: Mechanism and its relationship with toxicity vol.265, 2020, https://doi.org/10.1016/j.chemosphere.2020.129153
- Recent Clinical Trials on Natural Products and Traditional Chinese Medicine Combating the COVID-19 vol.61, pp.1, 2021, https://doi.org/10.1007/s12088-020-00919-x
- Quorum sensing: a new prospect for the management of antimicrobial-resistant infectious diseases vol.19, pp.5, 2020, https://doi.org/10.1080/14787210.2021.1843427
- Benefits of Usage of Immobilized Silver Nanoparticles as Pseudomonas aeruginosa Antibiofilm Factors vol.23, pp.1, 2020, https://doi.org/10.3390/ijms23010284