DOI QR코드

DOI QR Code

Recovery of Mass Changes in Antarctic Ice-Sheet based on the Regional Climate Model, RACMO

RACMO 기후 모델에 기반한 남극 빙상 질량 변동의 재현

  • Eom, Jooyoung (Department of earth science education, Kyungpook National University) ;
  • Rim, Hyoungrea (Department of earth science education, Pusan National University)
  • 엄주영 (경북대학교 지구과학교육과) ;
  • 임형래 (부산대학교 지구과학교육과)
  • Received : 2020.04.04
  • Accepted : 2020.04.27
  • Published : 2020.04.28

Abstract

Mass change in the Antarctic Ice Sheet(AIS) is the most important indicator of changes in Earth's climate system including global mean sea level rise that are largely affected by ongoing global warming. In this study, AIS mass variations are examined with satellite gravity data and outputs from a regional climate model. The analysis of gravity data shows that along the coastal region the Western AIS has experienced a continuous and significant ice loss while a slight increasing in the Eastern AIS during the study period (2002.08-2016.08). The temporal and spatial variations in ice mass changes are recovered by a regional climate model, but the recovered amplitudes are much smaller than those of observations. This under-estimation is remarkably resolved by modifying a base flow field for the ice discharge. The recovered estimates based on the ice-flow field can explain about 97% of the rate of mass change in observations before 2009. This implies that changes in ice flow dynamics along the coast line plays a pivotal role in regulating long-term budget of ice mass in AIS.

남극 빙상의 질량 변화는 지구온난화와 관련된 기후 변화와 해수면 상승의 가장 중요한 지표 중 하나이다. 본 연구에서는 위성 중력 자료와 광역 기후 수치 모델을 사용하여, 남극 빙상 질량에 대한 시공간 변화의 특성을 분석하였다. 중력 자료의 분석을 통해 연구 기간(2002.08-2016.08) 동안 지속적으로 남극 빙상의 심각한 질량 손실이 서남극을 중심으로 발생하였음을 확인하였고, 상대적으로 미약한 질량 증가가 동남극에 존재함을 확인하였다. 또한 이들 질량 변동이 해안 지역에 집중되어 있음을 함께 확인하였다. 광역 기후 수치 모델을 사용하여 이러한 질량 변동의 시간적, 공간적 패턴을 유사하게 재현할 수 있었으나, 관측 값에 비해 그 변화 폭이 매우 작았다. 이러한 문제는 빙하의 기저 유출량에 대한 조정을 통해 상당 부분 해결이 되었다. 이 과정에서 재현된 빙상의 질량 변화는 2009년 이전 관측 값의 추세를 97%정도 설명할 수 있었다. 이러한 결과는 빙하 흐름의 역학적 변동이 빙상의 가장 자리를 따라 크게 변하였고, 이러한 변화가 지난 10여 년 동안 남극 빙상의 질량 변화에 크게 영향을 주었다는 것을 의미한다.

Keywords

References

  1. Dee, D.P., Uppala, S.M., Simmons, A.J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M.A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A.C.M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A.J., Haimberger, L., Healy, S.B., Hersbach, H., Holm, E.V., Isaksen, L., Kallberg, P., Kohler, M., Matricardi, M., McNally, A.P., Monge-Sanz, B.M., Morcrette, J.-J., Park, B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thepaut, J.-N. and Vitarta, F. (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Quarterly Journal of the Royal Meteorological Society, v.137, p.553-597. https://doi.org/10.1002/qj.828
  2. Enderlin, E.M., Howat, I.M., Jeong, S., Noh, M.-J., van Angelen, J.H. and van den Broeke, M.R. (2014) An improved mass budget for the Greenland ice sheet. Geophysical Research Letters, v.41, p.866-872. https://doi.org/10.1002/2013GL059010
  3. Eom, J., Seo, K.-W., Lee, C.-K. and Wilson, C.R. (2017a) Correlated error reduction in GRACE data over Greenland using extended empirical orthogonal functions. Journal of Geophysical Research: Solid Earth, v.122, p.5578-5590. https://doi.org/10.1002/2017JB014379
  4. Eom, J., Seo, K.-W. and Ryu, D. (2017b) Estimation of Amazon River discharge based on EOF analysis of GRACE gravity data. Remote Sensing of Environment, v.191, p.55-66. https://doi.org/10.1016/j.rse.2017.01.011
  5. Fettweis, X., Box, J.E., Agosta, C., Amory, C., Kittel, C., Lang, C., van As, D., Machguth, H. and Gallee, H. (2017) Reconstructions of the 1900-2015 Greenland ice sheet surface mass balance using the regional climate MAR model. The Cryosphere, v.11, p.1015-1033. https://doi.org/10.5194/tc-11-1015-2017
  6. Fretwell, P., Pritchard, H.D., Vaughan, D.G., Bamber, J.L., Barrand, N.E., Bell, R., Bianchi, C., Bingham, R.G., Blankenship, D.D., Casassa, G., Catania, G., Callens, D., Conway, H., Cook, A.J., Corr, H.F.J., Damaske, D., Damm, V., Ferraccioli, F., Forsberg, R., Fujita, S., Gim, Y., Gogineni, P., Griggs, J.A. , Hindmarsh, R.C.A. , Holmlund, P., Holt, J.W., Jacobel, R.W., Jenkins, A., Jokat, W., Jordan, T., King, E.C., Kohler, J., Krabill, W., Riger-Kusk, M.K., Langley, A., Leitchenkov, G., Leuschen, C., Luyendyk, B.P., Matsuoka, K., Mouginot, J., Nitsche, F.O., Nogi, Y., Nost, O.A., Popov, S.V., Rignot, E., Rippin, D.M., Rivera, A., Roberts, J., Ross N., Siegert, M.J., Smith, A.M., Steinhage, D., Studinger, M., Sun, B., Tinto, B.K., Welch, B.C., Wilson, D., Young, D.A., Xiangbin, C. and Zirizzotti, A. (2013) Bedmap2: improved ice bed, surface and thickness datasets for Antarctica. The Cryosphere, 7(1), 375-393, doi:10.5194/tc-7-375-2013.
  7. Harig, C. and Simons, F.J. (2012) Mapping Greenland's mass loss in space and time. Proceedings of the National Academy of Sciences of the United States of America, v.109, p.19934-19937.
  8. IMBIE (2018) Mass balance of the Antarctic Ice Sheet from 1992 to 2017. Nature, v.558, p.219-222. https://doi.org/10.1038/s41586-018-0179-y
  9. Kim, J.-S., Seo, K.-W., Jeon, T., Chen, J. and Wilson C.R. (2019) Missing Hydrological Contribution to Sea Level Rise. Geophysical Research Letters, v.46, p.12049-12055. https://doi.org/10.1029/2019GL085470
  10. Longuevergne, L., Scanlon, B.R. and Wilson, C.R. (2010) GRACE Hydrological estimates for small basins: Evaluating processing approaches on the High Plains Aquifer, USA. Water Resources Research, v.46, p.W11517. https://doi.org/10.1029/2009WR008564
  11. Noel, B., van de Berg, W.J., van Meijgaard, E., Kuipers Munneke, P., van de Wal, R.S.W. and van den Broeke, M.R. (2015) Evaluation of the updated regional climate model RACMO2.3: summer snowfall impact on the Greenland Ice Sheet. The Cryosphere. v.9, p.1831-1844. https://doi.org/10.5194/tc-9-1831-2015
  12. Oppenheimer, M., Glavovic, B.C., Hinkel J., van de Wal, R., Magnan, A.K., Abd-Elgawad, A., Cai, R., Cifuentes-Jara, M., DeConto, R.M., Ghosh, T., Hay, J., Isla, F., Marzeion, B., Meyssignac, B. and Sebesvari, Z. (2019) Sea Level Rise and Implications for Low-Lying Islands, Coasts and Communities. In: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate, in press, 321p.
  13. Peltier, W.R., Argus, D.F. and Drummond, R. (2018) Comment on "An Assessment of the ICE-6G_C (VM5a) Glacial Isostatic Adjustment Model" by Purcell et al. Journal of Geophysical Research: Solid Earth, v.123, p.2019-2028. https://doi.org/10.1002/2016JB013844
  14. Pritchard, H.D., Arthern, R.J., Vaughan D.G. and Edwards, L.A. (2009) Extensive dynamic thinning on the margins of the Greenland and Antarctic ice sheets. Nature, v.461, p.971-975. https://doi.org/10.1038/nature08471
  15. Rignot, E., Bamber, J.L., van den Broeke, M.R., Davis, C., Li, Y., van de Berg, W. J. and van Meijgaard, E. (2008) Recent Antarctic ice mass loss from radar interferometry and regional climate modelling. Nature Geoscience, v.1, p.106-110. https://doi.org/10.1038/ngeo102
  16. Seo, K.-W., Eom, J. and Kwon, B.-D. (2014) Refinement of GRACE Gravity Model Including Earth's Mean Mass Variations. Journal of the Korean Earth Science Society, v.35, p.537-542. https://doi.org/10.5467/JKESS.2014.35.7.537
  17. Seo, K.-W., Waliser, D.E., Lee, C.-K., Tian, B., Scambos, T., Kim B.-M., van Angelen, J.H. and van den Broeke, M.R. (2015a) Accelerated mass loss from Greenland ice sheet: Links to atmospheric circulation in the North Atlantic. Global and Planetary Change, v.128, p.61-71. https://doi.org/10.1016/j.gloplacha.2015.02.006
  18. Seo, K.-W., Wilson, C.R., Scambos, T., Kim, B.-M., Waliser, D.E., Tian, B., Kim, B.-H. and Eom, J. (2015b) Surface mass balance contributions to acceleration of Antarctic ice mass loss during 2003-2013. Journal of Geophysical Research: Solid Earth, v.120, p.3617-3627. https://doi.org/10.1002/2014JB011755
  19. Shepherd, A., Ivins, E.R., A, G., Barletta, V.R., Bentley, M.J., Bettadpur, S., Briggs, K.H., Bromwich, D.H., Forsberg, R., Galin, N., Horwath, M., Jacobs, S., Joughin, I., King, M.A., Lenaerts, J.T.M., Li, J., Ligtenberg, S.R.M., Luckman, A., Luthcke, S.B., McMillan, M., Meister, R., Milne, G., Mouginot, J., Muir, A., Nicolas, J.P., Paden, J., Payne, A.J., Pritchard, H., Rignot, E., Rott, H., Sorensen, L.S., Scambos, T.A., Scheuchl, B., Schrama, E.J.O., Smith, B., Sundal, A.V., van Angelen, J.H., van de Berg, W.J., van den Broeke, M.R., Vaughan, D.G., Velicogna, I., Wahr, J., Whitehouse, P.L., Wingham, D.J., Yi, D., Young, D. and Zwally, H.J. (2012) A Reconciled Estimate of Ice-Sheet Mass Balance. Science, v.338, p.1183-1189. https://doi.org/10.1126/science.1228102
  20. Slepian, D. (1983) Some comments on Fourier analysis, uncertainty and modeling. SIAM Review, v.25, p.379-393. https://doi.org/10.1137/1025078
  21. Small, C. and Nicholls, R.J. (2003) A Global Analysis of Human Settlement in Coastal Zones. Journal of Coastal Research, v.19, p.584-599.
  22. Sutterley, T.C., Velicogna, I., Rignot, E., Mouginot, J., Flament, T., van den Broeke, M.R., van Wessem, J.M. and Reijmer, C.H. (2014) Mass loss of the Amundsen Sea Embayment of West Antarctica from four independent techniques. Geophysical Research Letters, v.41, p.8421-8428. https://doi.org/10.1002/2014GL061940
  23. Swenson, S. and Wahr, J. (2006) Post-processing removal of correlated errors in GRACE data. Geophysical Research Letters, v.33, p.L08402. https://doi.org/10.1029/2005GL025285
  24. van de Berg, W. J., van den Broeke, M.R., Reijmer, C.H. and van Meijgaard, E. (2006) Reassessment of the Antarctic surface mass balance using calibrated output of a regional atmospheric climate model. Journal of Geophysical Research, v.111, p.D11104. https://doi.org/10.1029/2005JD006495
  25. van den Broeke, M.R., Bamber, J., Ettema, J., Rignot, E., Schrama, E., van de Berg, W.J., van Meijgaard E., Velicogna, I. and Wouters B. (2009) Partitioning Recent Greenland Mass Loss. Science, v.326, p.984-986. https://doi.org/10.1126/science.1178176
  26. van den Broeke, M.R. (2019) RACMO2.3p1 annual surface mass balance Antarctica (1979-2014). PANGAEA, https://doi.org/10.1594/PANGAEA.896940.
  27. Velicogna, I., Sutterley, T.C., and vanden Broeke, M.R. (2014) Regional acceleration in ice mass loss from Greenland and Antarctica using GRACE time-variable gravity data. Geophysical Research Letters. v.41, p.8130-8137. https://doi.org/10.1002/2014GL061052
  28. Velicogna, I. and Wahr, J. (2013) Time-variable gravity observations of ice sheet mass balance: Precision and limitations of the GRACE satellite data. Geophysical Research Letters, v.40, p.3055-3063. https://doi.org/10.1002/grl.50527
  29. WCRP Global Sea Level Budget Group (2018) Global sea-level budget 1993-present. Earth System Science Data, v.10, p.1551-1590. https://doi.org/10.5194/essd-10-1551-2018
  30. Wieczorek, M.A. and Simons, F.J. (2005) Localized spectral analysis on the sphere. Geophysical Journal International, v.162, p.655-675. https://doi.org/10.1111/j.1365-246X.2005.02687.x
  31. Yu, S.H. and Min, K.D. (2005) Gravity Characteristics on the Eastern Asia by using GRACE data. Economic and Environmental Geology, v.38, p.299-304.
  32. Zenner, L., Fagiolini, E, Daras, I., Flechtner, F., Gruber, T., Schmidt, T. and Schwarz, G. (2012) Non-tidal atmospheric and oceanic mass variations and their impact on GRACE data analysis. Journal of Geodynamics, v.59-60, p.9-15. https://doi.org/10.1016/j.jog.2012.01.010