References
- Brudvik C, Hove LM. Childhood fractures in Bergen, Norway: identifying high-risk groups and activities. J Pediatr Orthop. 2003;23:629-34. https://doi.org/10.1097/01241398-200309000-00010
- Owen RA, Melton LJ 3rd, Johnson KA, Ilstrup DM, Riggs BL. Incidence of Colles' fracture in a North American community. Am J Public Health. 1982;72:605-7. https://doi.org/10.2105/AJPH.72.6.605
- http://www.wheelessonline.com/ortho/posterior_anterior_view_of_the_wrist. Accessed on 27 Oct 2019.
- http://www.wheelessonline.com/ortho/posterior_anterior_view_of_the_wrist. Accessed on 27 Oct 2019.
- Kiuru MJ, Haapamaki VV, Koivikko MP, Koskinen SK. Wrist injuries; diagnosis with multidetector CT. Emerg Radiol. 2004;10(4):182-5. https://doi.org/10.1007/s10140-003-0321-4
- Cho SU, Yang JI, Han KH, Cho YC, Yoo IS, Kim SW, Lee JW, Ryu S, You YH, Han SG, Park SS, Jung WJ, Jung WJ, Lee WS. The Accuracy of a Simple Radiologic Study for Diagnosing Intra-articular Fractures of the Distal Radius. J Korean Soc Emerg Med. 2010;21(5):569-74.
- Lee JG, Jun S, Cho YW, Lee H, Kim GB, Seo JB, Kim N. Deep Learning in Medical Imaging: General Overview. Korean J Radiol. 2017;18(4):570-84. https://doi.org/10.3348/kjr.2017.18.4.570
- A. Raj, S. Vishwanathan, B. Ajani, K. Krishnan, H. Agarwal. Automatic knee cartilage segmentation using fully volumetric convolutional neural networks for evaluation of osteoarthritis. 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), Washington, DC. 2018; 851-4.
- Kim BS, Lee IH, Retinal Blood Vessel Segmentation using Deep Learning. Korean Institute of Information Technology. 2019;17(5):77-82.
- Kim YJ, Park SJ, Kim KR, Kim KG. Automated Ulna and Radius Segmentation model based on Deep Learning on DEXA. Journal of Korea Multimedia Society. 2018;21(12):1407-16. https://doi.org/10.9717/KMMS.2018.21.12.1407
- DiBenedetto MR, Lubbers LM, Ruff ME, Nappi JF, Coleman CR. Quantification of error in measurement of radial inclination angle and radial-carpal distance. J Hand Surg Am. 1991;16(3):399-400. https://doi.org/10.1016/0363-5023(91)90004-U
- Jafari D, Najd Mazhar F, Jalili A, Zare S, Hoseini Teshnizi S. The Inter and intraobserver reliability of measurements of the distal radius radiographic indices. J. Res. Orthop. Sci.. 2014;1(2):22-5.
- Hossain, M., Andrew, J.G. Reliability of a digital radiographic system in measuring distal radial fracture displacement parameters. Eur J Orthop Surg Traumatol. 2008;18:565-9. https://doi.org/10.1007/s00590-008-0354-1
- M. Attia, M. Hossny, S. Nahavandi, and H. Asadi, Surgical tool segmentation using a hybrid deep CNN-RNN auto encoderdecoder. 2017 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Banff, AB. 2017; 3373-78.
- Schneider CA, Rasband WS, and Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nature methods. 2012;9(7):671-5. https://doi.org/10.1038/nmeth.2089
- K. He, X. Zhang, S. Ren, J. Sun. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition. 2016; 770-8.
- Park SJ, Kim YG, Park DK, Chung JW, Kim KG. Evaluation of Transfer Learning in Gastroscopy Image Classification using Convolutional Neural Network. Journal of biomedical Engineering Research. 2018;39(5):213-9. https://doi.org/10.9718/JBER.2018.39.5.213
- O. Ronneberger, P. Fischer, T. Brox. U-Net: Convolutional Networks for Biomedical Image Segmentation. International Conference on Medical image computing and computer-assisted intervention. 2015; 234-41.
- D. Giavarina. Understanding Bland Altman analysis. Biochemia medica. 2015;25(2):141-51. https://doi.org/10.11613/BM.2015.015