References
- Arrieta, M. C., Stiemsma, L. T., Dimitriu, P. A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M. J., Britton, H. M., Lefebvre, D. L., Subbarao, P., Mandhane, P., Becker, A., McNagny, K. M., Sears, M. R., Kollmann, T., Investigators, C. S., Mohn, W. W., Turvey, S. E. and Finlay, B. B. (2015) Early infancy microbial and metabolic alterations affect risk of childhood asthma. Sci. Transl. Med. 7, 307ra152. https://doi.org/10.1126/scitranslmed.aab2271
- Brown, A. J., Goldsworthy, S. M., Barnes, A. A., Eilert, M. M., Tcheang, L., Daniels, D., Muir, A. I., Wigglesworth, M. J., Kinghorn, I., Fraser, N. J., Pike, N. B., Strum, J. C., Steplewski, K. M., Murdock, P. R., Holder, J. C., Marshall, F. H., Szekeres, P. G., Wilson, S., Ignar, D. M., Foord, S. M., Wise, A. and Dowell, S. J. (2003) The Orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids. J. Biol. Chem. 278, 11312-11319. https://doi.org/10.1074/jbc.M211609200
- Davidson, W. F., Leung, D. Y. M., Beck, L. A., Berin, C. M., Boguniewicz, M., Busse, W. W., Chatila, T. A., Geha, R. S., Gern, J. E., Guttman-Yassky, E., Irvine, A. D., Kim, B. S., Kong, H. H., Lack, G., Nadeau, K. C., Schwaninger, J., Simpson, A., Simpson, E. L., Spergel, J. M., Togias, A., Wahn, U., Wood, R. A., Woodfolk, J. A., Ziegler, S. F. and Plaut, M. (2019) Report from the National Institute of Allergy and Infectious Diseases workshop on "Atopic dermatitis and the atopic march: mechanisms and interventions". J. Allergy Clin. Immunol. 143, 894-913. https://doi.org/10.1016/j.jaci.2019.01.003
- Huang, J., Su, M., Lee, B. K., Kim, M. J., Jung, J. H. and Im, D. S. (2018) Suppressive effect of 4-hydroxy-2-(4-hydroxyphenethyl) isoindoline-1,3-dione on ovalbumin-induced allergic asthma. Biomol. Ther. (Seoul) 26, 539-545. https://doi.org/10.4062/biomolther.2018.006
- Kim, J. Y., Jeong, M. S., Park, M. K., Lee, M. K. and Seo, S. J. (2014) Time-dependent progression from the acute to chronic phases in atopic dermatitis induced by epicutaneous allergen stimulation in NC/Nga mice. Exp. Dermatol. 23, 53-57. https://doi.org/10.1111/exd.12297
- Koga, C., Kabashima, K., Shiraishi, N., Kobayashi, M. and Tokura, Y. (2008) Possible pathogenic role of Th17 cells for atopic dermatitis. J. Invest. Dermatol. 128, 2625-2630. https://doi.org/10.1038/jid.2008.111
- Le Poul, E., Loison, C., Struyf, S., Springael, J. Y., Lannoy, V., Decobecq, M. E., Brezillon, S., Dupriez, V., Vassart, G., Van Damme, J., Parmentier, M. and Detheux, M. (2003) Functional characterization of human receptors for short chain fatty acids and their role in polymorphonuclear cells activation. J. Biol. Chem. 278, 25481-25489. https://doi.org/10.1074/jbc.M301403200
- Lee, J. M., Park, S. J. and Im, D. S. (2017) Calcium signaling of lysophosphatidylethanolamine through LPA1 in human SH-SY5Y neuroblastoma cells. Biomol. Ther. (Seoul) 25, 194-201. https://doi.org/10.4062/biomolther.2016.046
- Lee, S. Y., Lee, E., Park, Y. M. and Hong, S. J. (2018) Microbiome in the gut-skin axis in atopic dermatitis. Allergy Asthma Immunol. Res. 10, 354-362. https://doi.org/10.4168/aair.2018.10.4.354
- Lee, T., Schwandner, R., Swaminath, G., Weiszmann, J., Cardozo, M., Greenberg, J., Jaeckel, P., Ge, H., Wang, Y., Jiao, X., Liu, J., Kayser, F., Tian, H. and Li, Y. (2008) Identification and functional characterization of allosteric agonists for the G protein-coupled receptor FFA2. Mol. Pharmacol. 74, 1599-1609. https://doi.org/10.1124/mol.108.049536
- Leung, D. Y. and Guttman-Yassky, E. (2017) Assessing the current treatment of atopic dermatitis: unmet needs. J. Allergy Clin. Immunol. 139, S47-S48. https://doi.org/10.1016/j.jaci.2016.11.007
- Maslowski, K. M., Vieira, A. T., Ng, A., Kranich, J., Sierro, F., Yu, D., Schilter, H. C., Rolph, M. S., Mackay, F., Artis, D., Xavier, R. J., Teixeira, M. M. and Mackay, C. R. (2009) Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature 461, 1282-1286. https://doi.org/10.1038/nature08530
- Miyamoto, J., Kasubuchi, M., Nakajima, A. and Kimura, I. (2017) Antiinflammatory and insulin-sensitizing effects of free fatty acid receptors. Handb. Exp. Pharmacol. 236, 221-231.
- Muraro, A., Lemanske, R. F., Jr., Hellings, P. W., Akdis, C. A., Bieber, T., Casale, T. B., Jutel, M., Ong, P. Y., Poulsen, L. K., Schmid-Grendelmeier, P., Simon, H. U., Seys, S. F. and Agache, I. (2016) Precision medicine in patients with allergic diseases: airway diseases and atopic dermatitis-PRACTALL document of the European Academy of Allergy and Clinical Immunology and the American Academy of Allergy, Asthma & Immunology. J. Allergy Clin. Immunol. 137, 1347-1358. https://doi.org/10.1016/j.jaci.2016.03.010
- Nilsson, N. E., Kotarsky, K., Owman, C. and Olde, B. (2003) Identification of a free fatty acid receptor, FFA2R, expressed on leukocytes and activated by short-chain fatty acids. Biochem. Biophys. Res. Commun. 303, 1047-1052. https://doi.org/10.1016/S0006-291X(03)00488-1
- Park, S. J. and Im, D. S. (2019a) Blockage of sphingosine-1-phosphate receptor 2 attenuates allergic asthma in mice. Br. J. Pharmacol. 176, 938-949. https://doi.org/10.1111/bph.14597
- Park, S. J. and Im, D. S. (2019b) Deficiency of sphingosine-1-phosphate receptor 2 (S1P2) attenuates bleomycin-induced pulmonary fibrosis. Biomol. Ther. (Seoul) 27, 318-326. https://doi.org/10.4062/biomolther.2018.131
- Schofield, Z. V., Croker, D., Robertson, A. A. B., Massey, N. L., Donovan, C., Tee, E., Edwards, D., Woodruff, T. M., Halai, R., Hansbro, P. M. and Cooper, M. A. (2018) Characterisation of small molecule ligands 4CMTB and 2CTAP as modulators of human FFA2 receptor signalling. Sci. Rep. 8, 17819. https://doi.org/10.1038/s41598-018-36242-1
- Smith, N. J., Ward, R. J., Stoddart, L. A., Hudson, B. D., Kostenis, E., Ulven, T., Morris, J. C., Trankle, C., Tikhonova, I. G., Adams, D. R. and Milligan, G. (2011) Extracellular loop 2 of the free fatty acid receptor 2 mediates allosterism of a phenylacetamide ago-allosteric modulator. Mol. Pharmacol. 80, 163-173. https://doi.org/10.1124/mol.110.070789
- Sun, M., Wu, W., Liu, Z. and Cong, Y. (2017) Microbiota metabolite short chain fatty acids, GPCR, and inflammatory bowel diseases. J. Gastroenterol. 52, 1-8. https://doi.org/10.1007/s00535-016-1242-9
- Tan, J. K., McKenzie, C., Marino, E., Macia, L. and Mackay, C. R. (2017) Metabolite-sensing G protein-coupled receptors-facilitators of diet-related immune regulation. Annu. Rev. Immunol. 35, 371-402. https://doi.org/10.1146/annurev-immunol-051116-052235
- Theiler, A., Barnthaler, T., Platzer, W., Richtig, G., Peinhaupt, M., Rittchen, S., Kargl, J., Ulven, T., Marsh, L. M., Marsche, G., Schuligoi, R., Sturm, E. M. and Heinemann, A. (2019) Butyrate ameliorates allergic airway inflammation by limiting eosinophil trafficking and survival. J. Allergy Clin. Immunol. 144, 764-776. https://doi.org/10.1016/j.jaci.2019.05.002
- Trompette, A., Gollwitzer, E. S., Yadava, K., Sichelstiel, A. K., Sprenger, N., Ngom-Bru, C., Blanchard, C., Junt, T., Nicod, L. P., Harris, N. L. and Marsland, B. J. (2014) Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis. Nat. Med. 20, 159-166. https://doi.org/10.1038/nm.3444
- Ulven, T. (2012) Short-chain free fatty acid receptors FFA2/GPR43 and FFA3/GPR41 as new potential therapeutic targets. Front. Endocrinol. (Lausanne) 3, 111. https://doi.org/10.3389/fendo.2012.00111
Cited by
- Salvianolic Acid A Suppresses DNCB-Induced Atopic Dermatitis-Like Symptoms in BALB/c Mice vol.2021, 2020, https://doi.org/10.1155/2021/7902592
- Gardenia Jasminoides Ameliorates Antibiotic-Associated Aggravation of DNCB-Induced Atopic Dermatitis by Restoring the Intestinal Microbiome Profile vol.13, pp.4, 2021, https://doi.org/10.3390/nu13041349
- Role of Short Chain Fatty Acids and Apolipoproteins in the Regulation of Eosinophilia-Associated Diseases vol.22, pp.9, 2020, https://doi.org/10.3390/ijms22094377