DOI QR코드

DOI QR Code

Repositioned Drugs for Inflammatory Diseases such as Sepsis, Asthma, and Atopic Dermatitis

  • Prakash, Annamneedi Venkata (Convergence Research Center, Department of Pharmacy and Institute of Chronic Disease, Sahmyook University) ;
  • Park, Jun Woo (Convergence Research Center, Department of Pharmacy and Institute of Chronic Disease, Sahmyook University) ;
  • Seong, Ju-Won (Convergence Research Center, Department of Pharmacy and Institute of Chronic Disease, Sahmyook University) ;
  • Kang, Tae Jin (Convergence Research Center, Department of Pharmacy and Institute of Chronic Disease, Sahmyook University)
  • 투고 : 2020.01.01
  • 심사 : 2020.02.17
  • 발행 : 2020.05.01

초록

The process of drug discovery and drug development consumes billions of dollars to bring a new drug to the market. Drug development is time consuming and sometimes, the failure rates are high. Thus, the pharmaceutical industry is looking for a better option for new drug discovery. Drug repositioning is a good alternative technology that has demonstrated many advantages over de novo drug development, the most important one being shorter drug development timelines. In the last two decades, drug repositioning has made tremendous impact on drug development technologies. In this review, we focus on the recent advances in drug repositioning technologies and discuss the repositioned drugs used for inflammatory diseases such as sepsis, asthma, and atopic dermatitis.

키워드

참고문헌

  1. Aderibigbe, A. O., Emudianughe, T. S. and Lowal, B. A. (1999) Antihyperglycaemic effect of Mangifera indica in rat. Phytother. Res. 13, 504-507. https://doi.org/10.1002/(SICI)1099-1573(199909)13:6<504::AID-PTR533>3.0.CO;2-9
  2. Alaez-Verson, C. R., Lantero, E. and Fernandez-Busquets, X. (2017) Heparin: new life for an old drug. Nanomedicine (Lond.) 12, 1727-1744. https://doi.org/10.2217/nnm-2017-0127
  3. Ashburn, T. T. and Thor, K. B. (2004) Drug repositioning: identifying and developing new uses for existing drugs. Nat. Rev. Drug Discov. 3, 673-683. https://doi.org/10.1038/nrd1468
  4. Barnes, P. J. (2017) Cellular and molecular mechanisms of asthma and COPD. Clin. Sci. (Lond.) 131, 1541-1558. https://doi.org/10.1042/CS20160487
  5. Barnes, P. J. (2015) Therapeutic approaches to asthma-chronic obstructive pulmonary disease overlap syndromes. J. Allergy Clin. Immunol. 136, 531-545. https://doi.org/10.1016/j.jaci.2015.05.052
  6. Bateman, E. D., Hurd, S. S., Barnes, P. J., Bousquet, J., Drazen, J. M., FitzGerald, J. M., Gibson, P., Ohta, K., O'Byrne, P., Pedersen, S. E., Pizzichini, E., Sullivan, S. D., Wenzel, S. E. and Zar, H. J. (2008) Global strategy for asthma management and prevention: GINA executive summary. Eur. Respir. J. 31, 143-178. https://doi.org/10.1183/09031936.00138707
  7. Bellahsene, A. and Forsgren, A. (1980) Effect of rifampin on the immune response in mice. Infect. Immun. 27, 15-20. https://doi.org/10.1128/iai.27.1.15-20.1980
  8. Bergmann, R. L., Edenharter, G., Bergmann, K. E., Forster, J., Bauer, C. P., Wahn, V., Zepp, F. and Wahn, U. (1998) Atopic dermatitis in early infancy predicts allergic airway disease at 5 years. Clin. Exp. Allergy 28, 965-970. https://doi.org/10.1046/j.1365-2222.1998.00371.x
  9. Bernard, G. R., Vincent, J. L, Laterre, P. F., LaRosa S. P., Dhainau, J. F., Lopez-Rodriguez, A., Steingrub, J. S., Garber, G. E., Helterbrand, J. D., Ely, E. W. and Fisher, C. J., Jr.; Recombinant human protein C Worldwide Evaluation in Severe Sepsis (PROWESS) study group (2001) Efficacy and safety of recombinant human activated protein C for severe sepsis. N. Engl. J. Med. 344, 699-709. https://doi.org/10.1056/NEJM200103083441001
  10. Campillos, M., Kuhn, M., Gavin, A. C., Jensen, L. J. and Bork, P. (2008) Drug target identification using side-effect similarity. Science 321, 263-266. https://doi.org/10.1126/science.1158140
  11. Chang, M. W., Ayeni, C., Breuer, S. and Torbett, B. E. (2010) Virtual screening for HIV protease inhibitors: a comparison of AutoDock 4 and Vina. PLoS ONE 5, e11955. https://doi.org/10.1371/journal.pone.0011955
  12. Chang T. W. and Shiung, Y. Y. (2006) Anti-IgE as a mast cell-stabilizing therapeutic agent. J. Allergy Clin. Immunol. 117, 1203-1212. https://doi.org/10.1016/j.jaci.2006.04.005
  13. Chen, Y. Z. and Zhi, D. G. (2011) Ligand-protein inverse docking and its potential use in the computer search of protein targets of a small molecule. Proteins 43, 217-226. https://doi.org/10.1002/1097-0134(20010501)43:2<217::AID-PROT1032>3.0.CO;2-G
  14. Chong, C. R. and Sullivan, D. J. (2007) New uses for old drugs. Nature 448, 645-646. https://doi.org/10.1038/448645a
  15. Cramer, P. E., Cirrito, J. R., Wesson, D. W., Lee, C. Y., Karlo, J. C., Zinn, A. E., Casali, B. T., Restivo, J. L., Goebel, W. D., James, M. J., Brunden, K. R., Wilson, D. A. and Landreth, G. E. (2012) ApoE-directed therapeutics rapidly clear beta-amyloid and reverse deficits in AD mouse models. Science 335, 1503-1506. https://doi.org/10.1126/science.1217697
  16. Dudley, J. T., Deshpande, T. and Butte, A. J. (2011a) Exploiting drugdisease relationships for computational drug repositioning. Brief. Bioinformatics 12, 303-311. https://doi.org/10.1093/bib/bbr013
  17. Dudley, J. T., Sirota, M., Shenoy, M., Pai, R. K., Roedder, S., Chiang, A. P., Morgan, A. A., Sarwal, M. M., Pasricha, P. J. and Butte, A. J. (2011b) Computational repositioning of the anticonvulsant topiramate for inflammatory bowel disease. Sci. Transl. Med. 3, 96ra76. https://doi.org/10.1126/scitranslmed.3002648
  18. Ekins, S., Williams, A. J., Krasowski, M. D., Joel, S. and Freundlich, J. S. (2011) In silico repositioning of approved drugs for rare and neglected diseases. Drug Discov. Today 16, 298-310. https://doi.org/10.1016/j.drudis.2011.02.016
  19. Eule, H., Werner, E., Winsel, K. and Iwainsky, H. (1974) Intermittent chemotherapy of pulmonary tuberculosis using rifampicin and isoniazid for primary treatment: the influence of various factors on the frequency of side-effects. Tubercle 55, 81-89. https://doi.org/10.1016/0041-3879(74)90069-5
  20. Ghonim, M. A., Wang, J., Ibba, S. V., Luu, H. H., Pyakurel, K., Benslimane, I., Mousa, S. and Boulares, A. H. (2018) Sulfated non-anticoagulant heparin blocks Th2-induced asthma by modulating the IL-4/signal transducer and activator of transcription 6/Janus kinase 1 pathway. J. Transl. Med. 16, 243. https://doi.org/10.1186/s12967-018-1621-5
  21. Glock, G. E. (1946) Methyl-thiouracil and thiouracil as antithyroid drugs. Br. J. Pharmacol. Chemother. 1, 127-134. https://doi.org/10.1111/j.1476-5381.1946.tb00031.x
  22. Guha, S., Ghosal, S. and Chattopadhyay, U. (1996) Antitumor, immunomodulatory and anti-HIV effect of mangiferin, a naturally occurring glucosylxanthone. Chemotherapy 42, 443-451. https://doi.org/10.1159/000239478
  23. Hall, C. J., Wicker, S. M., Chien, A. T., Tromp, A., Lawrence, L. M., Sun, X., Krissansen, G. W., Crosier, K. E. and Crosier, P. S. (2014) Repositioning drugs for inflammatory disease - fishing for new antiinflammatory agents. Dis. Model. Mech. 7, 1069-1081. https://doi.org/10.1242/dmm.016873
  24. Hamid, Q. and Tulic, M. (2009) Immunobiology of asthma. Annu. Rev. Physiol. 71, 489-507. https://doi.org/10.1146/annurev.physiol.010908.163200
  25. Hasegawa, A., Hayashi, K., Kishimoto, H., Yang, M., Tofukuji, S., Suzuki, K., Nakajima, H., Hoffman, R. M., Shirai, M. and Nakayama, T. (2010) Color-coded real-time cellular imaging of lung T-lymphocyte accumulation and focus formation in a mouse asthma model. J. Allergy Clin. Immunol. 125, 461-468. https://doi.org/10.1016/j.jaci.2009.09.016
  26. Haupt, V. J. and Schroeder, M. (2011) Old friends in new guise: repositioning of known drugs with structural bioinformatics. Brief. Bioinformatics 12, 312-326. https://doi.org/10.1093/bib/bbr011
  27. He, L., Peng, X., Zhu, J., Chen, X., Liu, H., Tang, C., Dong, Z., Liu, F. and Peng, Y. (2014) Mangiferin attenuate sepsis-induced acute kidney injury via antioxidant and anti-inflammatory effects. Am. J. Nephrol. 40, 441-450. https://doi.org/10.1159/000369220
  28. Holgate, S. T. (2008) Pathogenesis of asthma. Clin. Exp. Allergy 38, 872-897. https://doi.org/10.1111/j.1365-2222.2008.02971.x
  29. Holmes, A. B., Hawson, A., Liu, F., Friedman, C., Khiabanian, H. and Rabadan, R. (2011) Discovering disease associations by integrating electronic clinical data and medical literature. PLoS ONE 6, e21132. https://doi.org/10.1371/journal.pone.0021132
  30. Huang, C. C., Chan, W. L., Chen, Y. C., Chen, T. J., Chou, K. T., Lin, S. J., Chen, J. W. and Leu, H. B. (2011) Statin use in patients with asthma: a nationwide population-based study. Eur. J. Clin. Invest. 41, 507-512. https://doi.org/10.1111/j.1365-2362.2010.02434.x
  31. Iorio, F., Bosotti, R., Scacheri, E., Belcastro, V., Mithbaokar, P., Ferriero, R., Murino, L., Tagliaferri, R., Brunetti-Pierri, N., Isacchi, A. and di Bernardo, D. (2010) Discovery of drug mode of action and drug repositioning from transcriptional responses. Proc. Natl. Acad. Sci. U.S.A. 107, 14621-14626. https://doi.org/10.1073/pnas.1000138107
  32. Jang, D., Lee, S., Lee, J., Kim, K. and Lee, D. (2016) Inferring new drug indications using the complementarity between clinical disease signatures and drug effects. J. Biomed. Inform. 59, 248-257. https://doi.org/10.1016/j.jbi.2015.12.003
  33. Jensen, P. B., Jensen, L. J. and Brunak, S. (2012) Mining electronic health records: towards better research applications and clinical care. Nat. Rev. Genet. 13, 395-405. https://doi.org/10.1038/nrg3208
  34. Jung, K., LePendu, P., Chen, W. S., Iyer, S. V., Readhead, B., Dudley, J. T. and Shah, N. H. (2014) Automated detection of off-label drug use. PLoS ONE 9, e89324. https://doi.org/10.1371/journal.pone.0089324
  35. Jung, K., LePendu, P. and Shah N. H. (2013) Automated detection of systematic off-label drug use in free text of electronic medical records. AMIA Jt. Summits Transl. Sci. Proc. 2013, 94-98.
  36. Kalesnikoff, J. and Galli, S. J. (2008) New developments in mast cell biology. Nat. Immunol. 9, 1215-1223. https://doi.org/10.1038/ni.f.216
  37. Keiser, M. J., Setola, V., Irwin, J. J., Laggner, C., Abbas, A. I., Hufeisen, S. J., Jensen, N. H., Kuijer, M. B., Matos, R. C., Tran, T. B., Whaley, R., Glennon, R. A., Hert, J., Thomas, K. L., Edwards, D. D., Shoichet, B. K. and Roth, B. L. (2009) Predicting new molecular targets for known drugs. Nature 462, 175-181. https://doi.org/10.1038/nature08506
  38. Kim, D. Y., Ryu, S. Y., Lim, J. E., Lee, Y. S. and Ro, J. Y. (2007) Antiinflammatory mechanism of simvastatin in mouse allergic asthma model. Eur. J. Pharmacol. 557, 76-86. https://doi.org/10.1016/j.ejphar.2006.11.027
  39. Kim, S. H., Lee, K. M., Lee, G. S., Seong, J. W. and Kang, T. J. (2017) Rifampicin alleviates atopic dermatitis-like response in vivo and in vitro. Biomol. Ther. (Seoul) 25, 634-640. https://doi.org/10.4062/biomolther.2017.147
  40. Kinnings, S. L., Liu, N., Buchmeier, N., Tonge, P. J., Xie, L. and Bourne, P. E. (2009) Drug discovery using chemical systems biology: repositioning the safe medicine Comtan to treat multi-drug and extensively drug resistant tuberculosis. PLoS Comput. Biol. 5, e1000423. https://doi.org/10.1371/journal.pcbi.1000423
  41. Kotelnikova, E., Yuryev, A., Mazo, I. and Daraselia, N. (2010) Computational approaches for drug repositioning and combination therapy design. J. Bioinform. Comput. Biol. 8, 593-606. https://doi.org/10.1142/S0219720010004732
  42. Kwak, S., Ku, S. K., Kang, H., Baek, M. C. and Bae, J. S. (2015) Methylthiouracil, a new treatment option for sepsis. Vascul. Pharmacol. 88, 1-10. https://doi.org/10.1016/j.vph.2015.07.013
  43. Lamb, J., Crawford, E. D., Peck, D., Modell, J. W., Blat, I. C., Wrobel, M. J., Lerner, J., Brunet, J. P., Subramanian, A., Ross, K. N., Reich, M., Hieronymus, H., Wei, G., Armstrong, S. A., Haggarty, S. J., Clemons, P. A., Wei, R., Carr, S. A., Lander, E. S. and Golub, T. R. (2006) The Connectivity Map: using gene-expression signatures to connect small molecules, genes, and disease. Science 313, 1929-1935. https://doi.org/10.1126/science.1132939
  44. Leung, D. Y., Boguniewicz, M., Howell, M. D., Nomura, I. and Hamid, Q. A. (2004) New insights into atopic dermatitis. J. Clin. Invest. 113, 651-657. https://doi.org/10.1172/JCI21060
  45. Li, J. and Lu, Z. (2013) Pathway-based drug repositioning using causal inference. BMC Bioinformatics 14 Suppl 16, S3.
  46. Li, Y. Y., An, J. and Jones, S. J. (2006) A large-scale computational approach to drug repositioning. Genome Inform. 17, 239-247.
  47. Liu, J., Suh, D., Yang, E., Lee, S., Park, H. and Shin, Y. (2014) Attenuation of airway inflammation by simvastatin and the implications for asthma treatment: is the jury still out? Exp. Mol. Med. 46, e113. https://doi.org/10.1038/emm.2014.55
  48. Liu, X., Zhu, F., Ma, X. H., Shi, Z., Yang, S. Y., Wei, Y. Q. and Chen, Y. Z. (2013) Predicting targeted polypharmacology for drug repositioning and multi- target drug discovery. Curr. Med. Chem. 20, 1646-1661. https://doi.org/10.2174/0929867311320130005
  49. Lokhandwala, T., West-Strum, D., Banahan, B. F., Bentley, J. P. and Yang, Y. (2012) Do statins improve outcomes in patients with asthma on inhaled corticosteroid therapy? A retrospective cohort analysis. BMJ Open 2, e001279. https://doi.org/10.1136/bmjopen-2012-001279
  50. Lounkine, E., Keiser, M. J., Whitebread, S., Mikhailov, D., Hamon, J., Jenkins, J. L., Lavan, P., Weber, E., Doak, A. K., Cote, S., Shoichet, B. K. and Urban, L. (2012) Large-scale prediction and testing of drug activity on side-effect targets. Nature 486, 361-367. https://doi.org/10.1038/nature11159
  51. Maneechotesuwan, K., Ekjiratrakul, W., Kasetsinsombat, K., Wongkajornsilp, A. and Barnes, P. J. (2010) Statins enhance the antiinflammatory effects of inhaled corticosteroids in asthmatic patients through increased induction of indoleamine 2 , 3-dioxygenase. J. Allergy Clin. Immunol. 126, 754-762.e1. https://doi.org/10.1016/j.jaci.2010.08.005
  52. Matkowski, A., Kus, P., Goralska, E. and Wozniak, D. (2013) Mangiferin - a bioactive xanthonoid, not only from mango and not just antioxidant. Mini Rev. Med. Chem. 13, 439-455. https://doi.org/10.2174/1389557511313030011
  53. Medzhitov, R. (2008) Origin and physiological roles of inflammation. Nature 454, 428-435. https://doi.org/10.1038/nature07201
  54. Mei, J. P., Kwoh, C. K., Yang, P., Li, X. L. and Zheng, J. (2013) Drugtarget interaction prediction by learning from local information and neighbors. Bioinformatics 29, 238-245. https://doi.org/10.1093/bioinformatics/bts670
  55. Menzies, D., Nair, A., Meldrum, K. T., Fleming, D., Barnes, M. and Lipworth, B. J. (2007) Simvastatin does not exhibit therapeutic anti-inflammatory effects in asthma. J. Allergy Clin. Immunol. 119, 328-335. https://doi.org/10.1016/j.jaci.2006.10.014
  56. Morrow, J. K., Tian, L. and Zhang, S. (2010) Molecular networks in drug discovery. Crit. Rev. Biomed. Eng. 38, 143-156. https://doi.org/10.1615/CritRevBiomedEng.v38.i2.30
  57. Mousavi, S., Moradi, M., Khorshidahmad, T. and Motamedi, M. (2015) Anti-inflammatory effects of heparin and its derivatives: a systematic review. Adv. Pharmacol. Sci. 2015, 507151. https://doi.org/10.1155/2015/507151
  58. Mushaben, E. M., Kramer, E. L., Brandt, E. B., Khurana Hershey, G. K. and Le Cras, T. D. (2011) Rapamycin attenuates airway hyperreactivity, goblet cells, and IgE in experimental allergic asthma. J. Immunol. 187, 5756-5763. https://doi.org/10.4049/jimmunol.1102133
  59. O'Connor, K. A. and Roth, B. L. (2005) Finding new tricks for old drugs: an efficient route for public-sector drug discovery. Nat. Rev. Drug Discov. 4, 1005-1014. https://doi.org/10.1038/nrd1900
  60. Oduah, E. I., Linhardt, R. J. and Sharfstein, S. T. (2016) Heparin: past, present, and future. Pharmaceuticals (Basel) 9, e38.
  61. Oprea, T. I., Nielsen, S. K., Ursu, O., Yang, J. J., Taboureau, O., Mathias, S. L., Kouskoumvekaki, L., Sklar, L. A. and Bologa, C. G. (2011) Associating drugs, targets and clinical outcomes into an integrated network affords a new platform for computer-aided drug repurposing. Mol. Inform. 30, 100-111. https://doi.org/10.1002/minf.201100023
  62. Ostroukhova, M., Kouides, R. W. and Friedman, E. (2009) The effect of statin therapy on allergic patients with asthma. Ann. Allergy Asthma Immunol. 103, 463-468. https://doi.org/10.1016/S1081-1206(10)60261-X
  63. Papi, A., Brightling, C., Pedersen, S. E. and Reddel, H. K. (2018) Asthma. Lancet 391, 783-800. https://doi.org/10.1016/S0140-6736(17)33311-1
  64. Petersen, L. J., Mosbech, H. and Skov, P. S. (1996) Allergen-induced histamine release in intact human skin in vivo assessed by skin microdialysis technique: characterization of factors influencing histamine releasability. J. Allergy Clin. Immunol. 97, 672-679. https://doi.org/10.1016/S0091-6749(96)70313-5
  65. Phatak, S. S. and Zhang, S. (2013) A novel multi-modal drug repurposing approach for identification of potent ACK1 inhibitors. Pac. Symp. Biocomput. 2013, 29-40.
  66. Phelps, K. (2011) Repositioning drugs to enhance a product's lifecycle. Drug Discov. Today Ther. Strateg. 8, 97-101. https://doi.org/10.1016/j.ddstr.2011.09.006
  67. Reddy, A. R. and Kaul, A. (1979) Effect of methyl thiouracil on radioiodine thyroidal retention in rats. Radiat. Environ. Biophys. 16, 347-354. https://doi.org/10.1007/BF01340572
  68. Rihel, J., Prober, D. A., Arvanites, A., Lam, K., Zimmerman, S., Jang, S., Haggarty, S. J., Kokel, D., Rubin, L. L., Peterson, R. T. and Schier, A. F. (2010) Zebrafish behavioral profiling links drugs to biological targets and rest/wake regulation. Science 327, 348-351. https://doi.org/10.1126/science.1183090
  69. Robinson, J. G. (2007) Simvastatin: present and future perspectives. Expert Opin. Pharmacother. 8, 2159-2127. https://doi.org/10.1517/14656566.8.13.2159
  70. Roque, F. S., Jensen, P. B., Schmock, H., Dalgaard, M., Andreatta, M., Hansen, T., Soeby, K., Bredkjær, S., Juul, A., Werge, T., Jensen, L. J. and Brunak, S. (2011) Using electronic patient records to discover disease correlations and stratify patient cohorts. PLoS Comput. Biol. 7, e1002141. https://doi.org/10.1371/journal.pcbi.1002141
  71. Russell, J. A. (2006) Management of sepsis. N. Engl. J. Med. 355, 1699-1713. https://doi.org/10.1056/NEJMra043632
  72. Ryu, J. C., Park, S. M., Hwangbo, M., Byun, S. H., Ku, S. K., Kim, Y. W., Kim, S. C., Jee, S. Y. and Cho, I. J. (2013) Methanol extract of Artemisia apiacea Hance attenuates the expression of inflammatory mediators via NF-kappaB inactivation. Evid. Based Complement. Altern. Med. 2013, 494681. https://doi.org/10.1155/2013/494681
  73. Samson, K. T., Minoguchi, K., Tanaka, A., Oda, N., Yokoe, T., Yamamoto, Y., Yamamoto, M., Ohta, S. and Adachi, M. (2006) Inhibitory effects of fluvastatin on cytokine and chemokine production by peripheral blood mononuclear cells in patients with allergic asthma. Clin. Exp. Allergy 36, 475-482. https://doi.org/10.1111/j.1365-2222.2006.02470.x
  74. Sanseau, P. and Koehler, J. (2011) Editorial: computational methods for drug repurposing. Brief. Bioinformatics 12, 301-302. https://doi.org/10.1093/bib/bbr047
  75. Sardana, D., Zhu, C., Zhang, M., Gudivada, R. C., Yang, L. and Jegga, A. G. (2011) Drug repositioning for orphan diseases. Brief. Bioinformatics 12, 346-356. https://doi.org/10.1093/bib/bbr021
  76. Schmidt, H., Hennen, R., Keller, A., Russ, M., Muller-Werdan, U., Werdan, K. and Buerke, M. (2006) Association of statin therapy and increased survival in patients with multiple organ dysfunction syndrome. Intensive Care Med. 32, 1248-1251. https://doi.org/10.1007/s00134-006-0246-y
  77. Sekhon, B. S. (2013) Repositioning drugs and biologics: retargeting old/existing drugs for potential new therapeutic applications. J. Pharm. Educ. Res. 4, 1-15.
  78. Sirota, M., Dudley, J. T., Kim, J., Chiang, A. P., Morgan, A. A., Sweet-Cordero, A., Sage, J. and Butte, A. J. (2011) Discovery and preclinical validation of drug indications using compendia of public gene expression data. Sci. Transl. Med. 3, 96ra77. https://doi.org/10.1126/scitranslmed.3001318
  79. Sivachenko, A., Kalinin, A. and Yuryev, A. (2006) Pathway analysis for design of promiscuous drugs and selective drug mixtures. Curr. Drug Discov. Technol. 3, 269-277. https://doi.org/10.2174/157016306780368117
  80. Sleigh, S. H. and Barton, C. L. (2010) Repurposing strategies for therapeutics. Pharm. Med. 24, 151-159. https://doi.org/10.1007/BF03256811
  81. Strittmatter, W. J. (2012) Medicine. Old drug, new hope for Alzheimer's disease. Science 35, 1447-1448. https://doi.org/10.1126/science.1220725
  82. Tobinick, E. L. (2009) The value of drug repositioning in the current pharmaceutical market. Drug News Perspect. 22,119-125. https://doi.org/10.1358/dnp.2009.22.2.1343228
  83. Tsankov, N. and Angelova, I. (2003) Rifampin in dermatology. Clin. Dermatol. 21, 50-55. https://doi.org/10.1016/S0738-081X(02)00328-0
  84. Vezina, C., Kudelski, A. and Sehgal, S. N. (1975) Rapamycin (AY-22,989), a new antifungal antibiotic. I. Taxonomy of the producing streptomycete and isolation of the active principle. J. Antibiot. 28, 721-726. https://doi.org/10.7164/antibiotics.28.721
  85. Waldner, M., Fantus, D., Solari, M. and Thomson, A. W. (2016) New perspectives on mTOR inhibitors (rapamycin, rapalogs and TORKinibs) in transplantation. Br. J. Clin. Pharmacol. 82, 1158-1170. https://doi.org/10.1111/bcp.12893
  86. Wehrli, W., Knusel, F., Schmid, K. and Staehelin, M. (1968) Interaction of rifamycin with bacterial RNA polymerase. Proc. Natl. Acad. Sci. U.S.A. 61, 667-673. https://doi.org/10.1073/pnas.61.2.667
  87. Wishart, D. S., Knox, C., Guo, A. C., Cheng, D., Shrivastava, S., Tzur, D., Gautam, B. and Hassanali, M. (2008) DrugBank: a knowledgebase for drugs, drug actions and drug targets. Nucleic Acids Res. 36, D901-D906. https://doi.org/10.1093/nar/gkm958
  88. Woodside, D. G. and Vanderslice, P. (2008) Cell adhesion antagonists: therapeutic potential in asthma and chronic obstructive pulmonary disease. BioDrugs 22, 85-100. https://doi.org/10.2165/00063030-200822020-00002
  89. Yamanishi, Y., Araki, M., Gutteridge, A., Honda, W. and Kanehisa, M. (2008) Prediction of drug-target interaction networks from the integration of chemical and genomic spaces. Bioinformatics 24, i232-i240. https://doi.org/10.1093/bioinformatics/btn162
  90. Yamanishi, Y., Kotera, M., Kanehisa, M. and Goto, S. (2010) Drugtarget interaction prediction from chemical, genomic and pharmacological data in an integrated framework. Bioinformatics 26, i246-i254. https://doi.org/10.1093/bioinformatics/btq176
  91. Yang, C. H., Kao, M. C., Shih, P. C., Li, K. Y., Tsai, P. S. and Huang, C. J. (2015) Simvastatin attenuates sepsis-induced blood-brain barrier integrity loss. J. Surg. Res. 194, 591-598. https://doi.org/10.1016/j.jss.2014.11.030
  92. Yang, J. H., Lee, E., Lee, B., Cho, W. K., Ma, J. Y. and Park, K. I. (2018) Ethanolic extracts of Artemisia apiacea Hance improved atopic dermatitis-like skin lesions in vivo and suppressed TNFalpha/IFN-gamma-induced proinflammatory chemokine production in vitro. Nutrients 10, 806. https://doi.org/10.3390/nu10070806
  93. Yildirim, M. A., Goh, K. I., Cusick, M. E., Barabasi, A. L. and Vidal, M. (2007) Drug-target network. Nat. Biotechnol. 25, 1119-1126. https://doi.org/10.1038/nbt1338
  94. Zahler, S., Tietze, S., Totzke, F., Kubbutat, M., Meijer, L., Vollmar, A. M. and Apostolakis, J. (2007) Inverse in silico screening for identification of kinase inhibitor targets. Chem. Biol. 14, 1207-1214. https://doi.org/10.1016/j.chembiol.2007.10.010
  95. Zarjou, A. and Agarwal, A. (2011) Sepsis and acute kidney injury. J. Am. Soc. Nephrol. 22, 999-1006. https://doi.org/10.1681/ASN.2010050484

피인용 문헌

  1. Protective effect of oral contraceptive against Helicobacter pylori infection in US adult females: NHANES 1999-2000 vol.149, 2021, https://doi.org/10.1017/s0950268821000923