DOI QR코드

DOI QR Code

${\mathfrak{A}}$-GENERATORS FOR THE POLYNOMIAL ALGEBRA OF FIVE VARIABLES IN DEGREE 5(2t - 1) + 6 · 2t

  • Phuc, Dang Vo (Faculty of Education Studies University of Khanh Hoa)
  • 투고 : 2019.02.26
  • 심사 : 2019.05.16
  • 발행 : 2020.04.30

초록

Let Ps := 𝔽2[x1, x2, …, xs] = ⊕n⩾0(Ps)n be the polynomial algebra viewed as a graded left module over the mod 2 Steenrod algebra, ${\mathfrak{A}}$. The grading is by the degree of the homogeneous terms (Ps)n of degree n in the variables x1, x2, …, xs of grading 1. We are interested in the hit problem, set up by F. P. Peterson, of finding a minimal system of generators for ${\mathfrak{A}}$-module Ps. Equivalently, we want to find a basis for the 𝔽2-graded vector space ${\mathbb{F}}_2{\otimes}_{\mathfrak{A}}$ Ps. In this paper, we study the hit problem in the case s = 5 and the degree n = 5(2t - 1) + 6 · 2t with t an arbitrary positive integer.

키워드

과제정보

I would like to give my deepest sincere thanks to Assoc. Prof. Nguyen Sum for many valuable discussions and his help in finding some strictly inadmissible monomials in this article.

참고문헌

  1. M. C. Crabb and J. R. Hubbuck, Representations of the homology of BV and the Steenrod algebra. II, in Algebraic topology: new trends in localization and periodicity (Sant Feliu de Guixols, 1994), 143-154, Progr. Math., 136, Birkhauser, Basel, 1996. https://doi.org/10.1007/978-3-0348-9018-2_9
  2. M. Kameko, Products of Projective Spaces as Steenrod Modules, ProQuest LLC, Ann Arbor, MI, 1990.
  3. M. F. Mothebe, Generators of the polynomial algebra ${\mathbb{F}}_2$[x1, x2, ..., $x_n$] as a module over the Steenrod algebra, PhD. thesis, The University of Manchester, 1997.
  4. T. N. Nam, A-generateurs generiques pour l'algebre polynomiale, Adv. Math. 186 (2004), no. 2, 334-362. https://doi.org/10.1016/j.aim.2003.08.004
  5. F. P. Peterson, Generators of $H*({\mathbb{R}}P^{\infty}{\times}{\mathbb{R}}P^{\infty})$ as a module over the Steenrod algebra, Abstracts Amer. Math. Soc. No. 833, April 1987.
  6. F. P. Peterson, A-generators for certain polynomial algebras, Math. Proc. Cambridge Philos. Soc. 105 (1989), no. 2, 311-312. https://doi.org/10.1017/S0305004100067803
  7. D. V. Phuc, The hit problem for the polynomial algebra of five variables in degree seventeen and its application, East-West J. Math. 18 (2016), no. 1, 27-46.
  8. D. V. Phuc and N. Sum, On the generators of the polynomial algebra as a module over the Steenrod algebra, C. R. Math. Acad. Sci. Paris 353 (2015), no. 11, 1035-1040. https://doi.org/10.1016/j.crma.2015.09.002
  9. D. V. Phuc and N. Sum, On a minimal set of generators for the polynomial algebra of five variables as a module over the Steenrod algebra, Acta Math. Vietnam. 42 (2017), no. 1, 149-162. https://doi.org/10.1007/s40306-016-0190-z
  10. S. B. Priddy, On characterizing summands in the classifying space of a group. I, Amer. J. Math. 112 (1990), no. 5, 737-748. https://doi.org/10.2307/2374805
  11. J. Repka and P. Selick, On the subalgebra of $H_*(({\mathbb{R}}P^{\infty})^n;{\mathbb{F}}_2)$ annihilated by Steenrod operations, J. Pure Appl. Algebra 127 (1998), 273-288. https://doi.org/10.1016/S0022-4049(96)00177-6
  12. W. M. Singer, The transfer in homological algebra, Math. Z. 202 (1989), no. 4, 493-523. https://doi.org/10.1007/BF01221587
  13. W. M. Singer, On the action of Steenrod squares on polynomial algebras, Proc. Amer. Math. Soc. 111 (1991), no. 2, 577-583. https://doi.org/10.2307/2048351
  14. N. E. Steenrod, Cohomology Operations, Lectures by N. E. STeenrod written and revised by D. B. A. Epstein. Annals of Mathematics Studies, No. 50, Princeton University Press, Princeton, NJ, 1962.
  15. N. Sum, The negative answer to Kameko's conjecture on the hit problem, Adv. Math. 225 (2010), no. 5, 2365-2390. https://doi.org/10.1016/j.aim.2010.04.026
  16. N. Sum, On the hit problem for the polynomial algebra, C. R. Math. Acad. Sci. Paris 351 (2013), no. 13-14, 565-568. https://doi.org/10.1016/j.crma.2013.07.016
  17. N. Sum, On the Peterson hit problem, Adv. Math. 274 (2015), 432-489. https://doi.org/10.1016/j.aim.2015.01.010
  18. N. Sum, The squaring operation and the Singer algebraic transfer, Preprint 2018, 38 pages; available online at https://arxiv.org/abs/1609.03006.
  19. N. Sum, On a construction for the generators of the polynomial algebra as a module over the Steenrod algebra, In: Singh M., Song Y., Wu J. (eds), Algebraic Topology and Related Topics. Trends in Mathematics. Birkhauser/Springer, Singapore (2019), 265-286. https://doi.org/10.1007/978-981-13-5742-8_14
  20. N. K. Tin, The admissible monomial basis for the polynomial algebra of five variables in degree eleven, Journal of Science, Quy Nhon University 6 (2012), 81-89.
  21. N. K. Tin, The admissible monomial basis for the polynomial algebra of five variables in degree $2^{s+1}$ + $2^s$ - 5, East-West J. Math. 16 (2014), no. 1, 34-46.
  22. N. K. Tin, On Singer's conjecture for the fifth algebraic transfer, Preprint 2016, 25 pages; available online at http://arxiv.org/abs/1609.02250.
  23. R. M. W. Wood, Steenrod squares of polynomials and the Peterson conjecture, Math. Proc. Cambridge Philos. Soc. 105 (1989), no. 2, 307-309. https://doi.org/10.1017/S0305004100067797
  24. R. M. W. Wood, Problems in the Steenrod algebra, Bull. London Math. Soc. 30 (1998), no. 5, 449-517. https://doi.org/10.1112/S002460939800486X