과제정보
I would like to give my deepest sincere thanks to Assoc. Prof. Nguyen Sum for many valuable discussions and his help in finding some strictly inadmissible monomials in this article.
참고문헌
- M. C. Crabb and J. R. Hubbuck, Representations of the homology of BV and the Steenrod algebra. II, in Algebraic topology: new trends in localization and periodicity (Sant Feliu de Guixols, 1994), 143-154, Progr. Math., 136, Birkhauser, Basel, 1996. https://doi.org/10.1007/978-3-0348-9018-2_9
- M. Kameko, Products of Projective Spaces as Steenrod Modules, ProQuest LLC, Ann Arbor, MI, 1990.
-
M. F. Mothebe, Generators of the polynomial algebra
${\mathbb{F}}_2$ [x1, x2, ...,$x_n$ ] as a module over the Steenrod algebra, PhD. thesis, The University of Manchester, 1997. - T. N. Nam, A-generateurs generiques pour l'algebre polynomiale, Adv. Math. 186 (2004), no. 2, 334-362. https://doi.org/10.1016/j.aim.2003.08.004
-
F. P. Peterson, Generators of
$H*({\mathbb{R}}P^{\infty}{\times}{\mathbb{R}}P^{\infty})$ as a module over the Steenrod algebra, Abstracts Amer. Math. Soc. No. 833, April 1987. - F. P. Peterson, A-generators for certain polynomial algebras, Math. Proc. Cambridge Philos. Soc. 105 (1989), no. 2, 311-312. https://doi.org/10.1017/S0305004100067803
- D. V. Phuc, The hit problem for the polynomial algebra of five variables in degree seventeen and its application, East-West J. Math. 18 (2016), no. 1, 27-46.
- D. V. Phuc and N. Sum, On the generators of the polynomial algebra as a module over the Steenrod algebra, C. R. Math. Acad. Sci. Paris 353 (2015), no. 11, 1035-1040. https://doi.org/10.1016/j.crma.2015.09.002
- D. V. Phuc and N. Sum, On a minimal set of generators for the polynomial algebra of five variables as a module over the Steenrod algebra, Acta Math. Vietnam. 42 (2017), no. 1, 149-162. https://doi.org/10.1007/s40306-016-0190-z
- S. B. Priddy, On characterizing summands in the classifying space of a group. I, Amer. J. Math. 112 (1990), no. 5, 737-748. https://doi.org/10.2307/2374805
-
J. Repka and P. Selick, On the subalgebra of
$H_*(({\mathbb{R}}P^{\infty})^n;{\mathbb{F}}_2)$ annihilated by Steenrod operations, J. Pure Appl. Algebra 127 (1998), 273-288. https://doi.org/10.1016/S0022-4049(96)00177-6 - W. M. Singer, The transfer in homological algebra, Math. Z. 202 (1989), no. 4, 493-523. https://doi.org/10.1007/BF01221587
- W. M. Singer, On the action of Steenrod squares on polynomial algebras, Proc. Amer. Math. Soc. 111 (1991), no. 2, 577-583. https://doi.org/10.2307/2048351
- N. E. Steenrod, Cohomology Operations, Lectures by N. E. STeenrod written and revised by D. B. A. Epstein. Annals of Mathematics Studies, No. 50, Princeton University Press, Princeton, NJ, 1962.
- N. Sum, The negative answer to Kameko's conjecture on the hit problem, Adv. Math. 225 (2010), no. 5, 2365-2390. https://doi.org/10.1016/j.aim.2010.04.026
- N. Sum, On the hit problem for the polynomial algebra, C. R. Math. Acad. Sci. Paris 351 (2013), no. 13-14, 565-568. https://doi.org/10.1016/j.crma.2013.07.016
- N. Sum, On the Peterson hit problem, Adv. Math. 274 (2015), 432-489. https://doi.org/10.1016/j.aim.2015.01.010
- N. Sum, The squaring operation and the Singer algebraic transfer, Preprint 2018, 38 pages; available online at https://arxiv.org/abs/1609.03006.
- N. Sum, On a construction for the generators of the polynomial algebra as a module over the Steenrod algebra, In: Singh M., Song Y., Wu J. (eds), Algebraic Topology and Related Topics. Trends in Mathematics. Birkhauser/Springer, Singapore (2019), 265-286. https://doi.org/10.1007/978-981-13-5742-8_14
- N. K. Tin, The admissible monomial basis for the polynomial algebra of five variables in degree eleven, Journal of Science, Quy Nhon University 6 (2012), 81-89.
-
N. K. Tin, The admissible monomial basis for the polynomial algebra of five variables in degree
$2^{s+1}$ +$2^s$ - 5, East-West J. Math. 16 (2014), no. 1, 34-46. - N. K. Tin, On Singer's conjecture for the fifth algebraic transfer, Preprint 2016, 25 pages; available online at http://arxiv.org/abs/1609.02250.
- R. M. W. Wood, Steenrod squares of polynomials and the Peterson conjecture, Math. Proc. Cambridge Philos. Soc. 105 (1989), no. 2, 307-309. https://doi.org/10.1017/S0305004100067797
- R. M. W. Wood, Problems in the Steenrod algebra, Bull. London Math. Soc. 30 (1998), no. 5, 449-517. https://doi.org/10.1112/S002460939800486X