Acknowledgement
Supported by : 한국에너지기술평가원 (KETEP)
본 연구는 산업통상자원부의 재원으로 한국에너지기술평가원 (KETEP)의 지원을 받아 수행한 연구 과제입니다.(No.20172010105610)
References
- Ahn, K. U., Park, S. H., Hwang, S., Choi, S., & Park, C. S. (2019). Optimal control strategies of eight parallel heat pumps using Gaussian process emulator. Journal of Building Performance Simulation, 12(5), 650-662. https://doi.org/10.1080/19401493.2019.1597924
- Ahn, Y. S., Kim, H. J., Lee. S. K., & Kim, B. S. (2019). Prediction of Heating Energy Consumption Using Machine Learning and Parameters in Combined Heat and Power Generation. Korean Journal of Air-Conditioning and Refrigeration Engineering, 31(8), 352-360. https://doi.org/10.6110/KJACR.2019.31.8.352
- Do, H., & Cetin, K. S. (2019). Data-Driven Evaluation of Residential HVAC System Efficiency Using Energy and Environmental Data. Energies, 12(1), 188. https://doi.org/10.3390/en12010188
- Hong, T., Yang, L., Hill, D., & Feng, W. (2014). Data and analytics to inform energy retrofit of high performance buildings. Applied Energy, 126, 90-106. https://doi.org/10.1016/j.apenergy.2014.03.052
- Jeong, Y. S., & Cho, C. H. (2016). A Forecast of Energy Demand in Building Sector using Energy System Model. Journal of KIAEBS, 10(5), 368-374.
- Kim, Y. K., & Lee, T. W. (2011). An Analysis of the Energy Saving Effects through Retrofit and Optimal Operation in Medium Sized Building. Proceeding of the SAREK summer Annual Conference, (), 654-659.
- Kim, Y. K., & Lee, T. W. (2018). An Analysis of the Energy Consumption Characteristics of a Medium Sized Office Building. Journal of Korea Facility Management Association, 9(1), 41-49.
- Kriksciuniene, D., Pitner, T., Kucera, A., & Sakalauskas, V. (2014). Data Analysis in the Intelligent Building Environment. IJCSA, 11(1), 1-17.
- Lim, H. M., Cho, S., Kim, G. S., & Seo, D. H. (2017). A Study on Empirical Study on the Improvement of BEMS Operation. Proceeding of the SAREK summer Annual Conference, (), 1076-1079.
- Park, B. Y., Cho, J. K., & Jeong Y. D. (2018). Research on Requirements of Power Demand Management for Integrated Building Energy Supply System. Korean Journal of Air-Conditioning and Refrigeration Engineering, 30(9), 443-450. https://doi.org/10.6110/KJACR.2018.30.9.443
- Park, S. H., Ahn, K. U., Hwang, S., Choi, S., & Park, C. S. (2019). Machine learning vs. hybrid machine learning model for optimal operation of a chiller. Science and Technology for the Built Environment, 25(2), 209-220. https://doi.org/10.1080/23744731.2018.1510270
- Ra, S. J., Son, J. W., & Aum, T. Y. (2019). An Analysis on Operation Status using BEMS Data of the HVAC Systems in a Public Office Building. Proceeding of the SAREK 2019 Summer Annual Conference, (), 321-324.
- Seo, J. S., Kim, Y. K., Yu, J. H., & Lee, T. W. (2012). An Analysis of Energy Consumption Partterns and Operation Status for a Medium-sized Office Building. Proceeding of the SAREK Winter Annual Conference, (), 117-120.
- Suh, W. J., Chu, H. G., S, H. S., & Ra, S. J. (2017). Overall Efficiency Optimization of a Buildings's Cooling Plant using Deep Neural Network. Proceeding of the Autumn Annual Conference of AIK, 37(2), 552-553.