DOI QR코드

DOI QR Code

Multi-Residue Analysis of 18 Dye Residues in Animal Products by Liquid Chromatography-Tandem Mass Spectrometry

  • Park, Hyunjin (Pesticide and Veterinary Drug Residues Division, National Institute of Food and Drug Safety Evaluation) ;
  • Kim, Joohye (Pesticide and Veterinary Drug Residues Division, National Institute of Food and Drug Safety Evaluation) ;
  • Kang, Hui-Seung (Pesticide and Veterinary Drug Residues Division, National Institute of Food and Drug Safety Evaluation) ;
  • Cho, Byung-Hoon (Pesticide and Veterinary Drug Residues Division, National Institute of Food and Drug Safety Evaluation) ;
  • Oh, Jae-Ho (Pesticide and Veterinary Drug Residues Division, National Institute of Food and Drug Safety Evaluation)
  • 투고 : 2020.01.15
  • 심사 : 2020.02.29
  • 발행 : 2020.04.30

초록

본 연구는 불법적으로 수산물에 사용될 수 있는 염료 18 종에 대한 안전관리 강화를 위해 정량 및 정성 분석이 가능한 LC-MS/MS 를 적용하여 검증하기 위해 수행되었다. 확립된 시험법은 CODEX CAC/GL-71 가이드라인에 따라 직선성, 정밀성, 정량한계 및 회수율 등을 통해 유효성을 확인하였다. 대상시료에 1% 아세트산을 함유한 아세토니트릴로 추출 후 C18 과 PSA 로 정제하였다. 본 실험에서 정량한계는 0.002 mg/kg 수준으로 정량한계를 포함한 농도에 따라 검량선을 작성하였고 모두 0.98 이상의 직선성을 확인하였다. 또한 정확성은 63%-112% 이고, 정밀도는 15% 이하로 재현성이 우수하였다. 국내 유통 중인 수산물 124 건을 수거하여 개발된 분석법의 적용성 검증과 안전성을 확인하고자 잔류실태조사를 실시 하였고 그 결과 7 건이 미량으로 검출 되었고 부적합은 없었다. 확립된 시험법은 수산물 안전관리에 활용할 수 있을 것으로 사료되는 바이다.

This study aimed to develop an analytical method for determination of 18 dyes in livestock and fishery products by liquid chromatograph-tandem mass spectrometry (LC-MS/MS). The developed method was validated for linearity, accuracy, limit of quantifications (LOQ) and recovery based on the CODEX guideline (CAC/GL-71). Target matrices (beef, pork, chicken, egg, milk, flatfish, eel, and shrimp) were extracted using acetonitrile (containing 1% of acetic acid) and then, purified with C18 and primary secondary amine (PSA). Calibration linearity was obtained (r2>0.98) and LOQs were 0.002 mg/kg in animal products. The recoveries of dyes were ranged from 63 to 112% and relative standard deviations (RSDs, %) were less than 15%. The residues of 18 dyes were investigated in real samples (n=124) collected from retail markets in South Korea. As a result, a total of seven samples showed positive results for target analytes in fish samples. However, there was no violation according to the maximum residue limits set by the Korean Food Code. The proposed method will be used for routine analysis of dye residues in livestock and fishery products.

키워드

참고문헌

  1. Yang, M.C., Fang, J.M., Kuo, T.F., Wang, D.M., Huang, Y.L., Liu, L.Y., Chen, P.H., Chang, T.H., Production of antibodies for selective detection of malachite green and the related triphenylmethane dyes in fish and fishpond water. J. Agric. Food Chem., 55, 8851-8856 (2007). https://doi.org/10.1021/jf071195y
  2. Oplatowska, M., Connolly, L., Stevenson, P., Stead, S., Elliott, C.T., Development and validation of a fast monoclonal based disequilibrium enzyme-linked immunosorbent assay for the detection of triphenylmethane dyes and their metabolites in fish. Anal. Chim. Acta, 698, 51-60 (2011). https://doi.org/10.1016/j.aca.2011.04.047
  3. Rayaroth, M.P., Aravind, U.K., Aravindakumar, C.T., Effect of inorganic ions on the ultrasound initiated degradation and product formation of triphenylmethane dyes. Ultrason. Sonochem., 48, 482-491 (2018). https://doi.org/10.1016/j.ultsonch.2018.07.009
  4. Kosanic, M.M., Trickovic, J. S., Degradation of pararosaniline dye photoassisted by visible light. J. Photochem.Photobiol. A, 149, 247-251 (2002). https://doi.org/10.1016/S1010-6030(02)00007-2
  5. Culp, S.J., Beland, F.A., Malachite green a toxicological review. J. Am. Coll. Toxicol., 15, 219-238 (1996). https://doi.org/10.3109/10915819609008715
  6. Alderman, D.J., Malachite green: a review. J. Fish Dis., 8, 289-298 (1985). https://doi.org/10.1111/j.1365-2761.1985.tb00945.x
  7. Chen, R.C., Wei, K.J., Wang, T.M., Yu, Y.M., Li, J.Y., Lee, S.H., Wang, W.H., Ren, T.Je., Tsai, C.W., Simultaneous quantification of antibiotic dyes in aquatic products and feeds by liquid chromatography-tandem mass spectrometry. J. Food Drug Anal., 21, 339-346 (2013). https://doi.org/10.1016/j.jfda.2013.09.001
  8. Culp, S.J., Mellick, P.W., Trotter, R.W., Greenlees, K.J., Kodell, R.L., Beland, F.A., Carcinogenicity of malachite green chloride and leucomalachite green in B6C3F1 mice and F344 rats. Food Chem. Toxicol., 44, 1204-1212 (2006). https://doi.org/10.1016/j.fct.2006.01.016
  9. Littlefield, N.A., Blackwell, B.N., Hewitt, C.C., Gaylor, D.W., Chronic toxicity and carcinogenicity studies of gentian violet in mice. Fundam. Appl. Toxicol., 5, 902-912 (1985). https://doi.org/10.1016/0272-0590(85)90172-1
  10. Culp, S.J., Beland, F.A., Heflich, R.H., Benson, R.W., Blankenship, L.R., Webb, P.J., Mellick, P.W., Trotter, R.W., Shelton, S.D., Greenlees, K.J., Manjanatha, M.G., Mutagenicity and carcinogenicity in relation to DNA adduct formation in rats fed leucomalachite green. Mutat. Res., 506-507, 55-63 (2002). https://doi.org/10.1016/S0027-5107(02)00152-5
  11. Angelis, I.D., Albo, A.G., Nebbia, C., Stammati, A., Zampaglioni, F., Dacasto, M., 204 Cytotoxic effects of malachite green in two human cell lines. Toxicol. Lett., 144, 58 (2003).
  12. Wainwright, M., In defence of 'dye therapy'. Int. J. Antimicrob. Agents, 44, 26-29 (2014). https://doi.org/10.1016/j.ijantimicag.2014.02.013
  13. Cheng, Y.Y., Tsai, T.H., Pharmacokinetics and biodistribution of the illegal food colorant rhodamine B in rats. J. agric. food chem., 65, 1078-1085 (2017). https://doi.org/10.1021/acs.jafc.6b04975
  14. Zhong, H.E., Shaogui, Y.A.N.G., Yongming, J.U., Cheng, S.U.N., Microwave photocatalytic degradation of Rhodamine B using $TiO_{2}$ supported on activated carbon: Mechanism implication. J. Environ. Sci., 21, 268-272 (2009). https://doi.org/10.1016/S1001-0742(08)62262-7
  15. Kul, D., Ghica, M.E., Pauliukaite, R., Brett, C.M., A novel amperometric sensor for ascorbic acid based on poly (Nile blue A) and functionalised multi-walled carbon nanotube modified electrodes. Talanta, 111, 76-84 (2013). https://doi.org/10.1016/j.talanta.2013.02.043
  16. Li, C., Huang, Y., Lai, K., Rasco, B.A., Fan, Y., Analysis of trace methylene blue in fish muscles using ultra-sensitive surface-enhanced Raman spectroscopy. Food Control, 65, 99-105 (2016). https://doi.org/10.1016/j.foodcont.2016.01.017
  17. Food and Agriculture Oragnization of the United Nations, 2018. The state of world fisheries and aquaculture. Rome, Italy, pp.1-227.
  18. Kang, H.S., Lee, S.B., Shin, D., Jeong, J., Hong, J.H., Rhee, G.S., Occurrence of veterinary drug residues in farmed fishery products in South Korea. Food Control, 85, 57-65 (2018). https://doi.org/10.1016/j.foodcont.2017.09.019
  19. Kang, H.S., Kwon, N.J., Jeong, J., Lee, K., Lee, H., Webbased Korean maximum residue limit evaluation tools: an applied example of maximum residue limit evaluation for trichlorfon in fishery products. Environ. Sci. Pollut. Res., 26(7), 7284-7299 (2019). https://doi.org/10.1007/s11356-019-04314-y
  20. Andersena, W.C., Turnipseed, S.B., Karbiwnyk, C.M., Lee, R.H., Clark, S.B., Rowe, W.D., Madson, M.R., Miller, K.E., Multiresidue method for the triphenylmethane dyes in fish: Malachite green, crystal (gentian) violet, and brilliant green. Anal. Chim. Acta, 637, 279-289 (2009). https://doi.org/10.1016/j.aca.2008.09.041
  21. Alimentarius, C., 2009. Guidelines for the design and implementation of national regulatory food safety assurance programme associated with the use of veterinary drugs in food producing animals. CAC/GL, 71. Rome, Italy, pp.1-42.
  22. Nebot, C., Iglesias, A., Barreiro, R., Miranda, J.M., Vazquez, B., Franco, C.M., Cepeda, A., A simple and rapid method for the identification and quantification of malachite green and its metabolite in hake by HPLC-MS/MS. Food Control, 31, 102-107 (2013). https://doi.org/10.1016/j.foodcont.2012.09.020
  23. Dubreil, E., Mompelat, S., Kromer, V., Guitton, Y., Danionc, M., Morinc, T., Hurtaud-Pessel, D., Verdon, E., Dyes residues in aquaculture products: Targeted and metabolomics mass spectrometric approaches to track their abuse. Food Chem., 294, 355-367 (2019). https://doi.org/10.1016/j.foodchem.2019.05.056
  24. Verdon,E., Andersen, W.C., 2017. Certain dyes as pharmacologically active substances in fishfarming and other aquaculture products. Chemical Analysis of Non-antimicrobial Veterinary Drug Residues in Food. Wiley, New Jersey. pp. 497-531.
  25. Xu, J.Z., Dai, L., Wu, B., Ding, T., Zhu, J.J., Lin, H., Chen, H.L., Shen, C.Y., Jiang, Y., Determination of methylene blue residues in aquatic products by liquid chromatography tandem mass spectrometry. J. Sep. Sci., 32, 4193-4199 (2009). https://doi.org/10.1002/jssc.200900364
  26. Xu, Y.J., Tian, X.H., Zhang, X.Z., Gong, X.H., Liu, H.H., Zhang, H.J., Huang, H., Zhang, L.M., Simultaneous determination of malachite green, crystal violet, methylene blue and the metabolite residues in aquatic products by ultra-performance liquid chromatography with electrospray ionization tandem mass spectrometry. J. Chromatogr. Sci., 50, 591-597 (2012). https://doi.org/10.1093/chromsci/bms054
  27. Zhao, L., Lucas, D., Multi residue analysis of veterinary drugs in bovine liver by lc-ms/ms. Aglient Tech. Inc., 5991-6096 (2015).
  28. Dasenaki, M.E., Thomaidis, N.S., Multi-residue determination of 115 veterinary drugs and pharmaceutical residues in milk powder, butter, fish tissue and eggs using liquid chromatography-tandem mass spectrometry. Anal. Chim. Acta, 880, 103-121 (2015). https://doi.org/10.1016/j.aca.2015.04.013
  29. Martin, F., Oberson, J.M., Meschiari, M., Munari, C., Determination of 18 water-soluble artificial dyes by LC-MS in selected matrices. Food Chem, 197, 1249-1255 (2016). https://doi.org/10.1016/j.foodchem.2015.11.067