References
- Yang, M.C., Fang, J.M., Kuo, T.F., Wang, D.M., Huang, Y.L., Liu, L.Y., Chen, P.H., Chang, T.H., Production of antibodies for selective detection of malachite green and the related triphenylmethane dyes in fish and fishpond water. J. Agric. Food Chem., 55, 8851-8856 (2007). https://doi.org/10.1021/jf071195y
- Oplatowska, M., Connolly, L., Stevenson, P., Stead, S., Elliott, C.T., Development and validation of a fast monoclonal based disequilibrium enzyme-linked immunosorbent assay for the detection of triphenylmethane dyes and their metabolites in fish. Anal. Chim. Acta, 698, 51-60 (2011). https://doi.org/10.1016/j.aca.2011.04.047
- Rayaroth, M.P., Aravind, U.K., Aravindakumar, C.T., Effect of inorganic ions on the ultrasound initiated degradation and product formation of triphenylmethane dyes. Ultrason. Sonochem., 48, 482-491 (2018). https://doi.org/10.1016/j.ultsonch.2018.07.009
- Kosanic, M.M., Trickovic, J. S., Degradation of pararosaniline dye photoassisted by visible light. J. Photochem.Photobiol. A, 149, 247-251 (2002). https://doi.org/10.1016/S1010-6030(02)00007-2
- Culp, S.J., Beland, F.A., Malachite green a toxicological review. J. Am. Coll. Toxicol., 15, 219-238 (1996). https://doi.org/10.3109/10915819609008715
- Alderman, D.J., Malachite green: a review. J. Fish Dis., 8, 289-298 (1985). https://doi.org/10.1111/j.1365-2761.1985.tb00945.x
- Chen, R.C., Wei, K.J., Wang, T.M., Yu, Y.M., Li, J.Y., Lee, S.H., Wang, W.H., Ren, T.Je., Tsai, C.W., Simultaneous quantification of antibiotic dyes in aquatic products and feeds by liquid chromatography-tandem mass spectrometry. J. Food Drug Anal., 21, 339-346 (2013). https://doi.org/10.1016/j.jfda.2013.09.001
- Culp, S.J., Mellick, P.W., Trotter, R.W., Greenlees, K.J., Kodell, R.L., Beland, F.A., Carcinogenicity of malachite green chloride and leucomalachite green in B6C3F1 mice and F344 rats. Food Chem. Toxicol., 44, 1204-1212 (2006). https://doi.org/10.1016/j.fct.2006.01.016
- Littlefield, N.A., Blackwell, B.N., Hewitt, C.C., Gaylor, D.W., Chronic toxicity and carcinogenicity studies of gentian violet in mice. Fundam. Appl. Toxicol., 5, 902-912 (1985). https://doi.org/10.1016/0272-0590(85)90172-1
- Culp, S.J., Beland, F.A., Heflich, R.H., Benson, R.W., Blankenship, L.R., Webb, P.J., Mellick, P.W., Trotter, R.W., Shelton, S.D., Greenlees, K.J., Manjanatha, M.G., Mutagenicity and carcinogenicity in relation to DNA adduct formation in rats fed leucomalachite green. Mutat. Res., 506-507, 55-63 (2002). https://doi.org/10.1016/S0027-5107(02)00152-5
- Angelis, I.D., Albo, A.G., Nebbia, C., Stammati, A., Zampaglioni, F., Dacasto, M., 204 Cytotoxic effects of malachite green in two human cell lines. Toxicol. Lett., 144, 58 (2003).
- Wainwright, M., In defence of 'dye therapy'. Int. J. Antimicrob. Agents, 44, 26-29 (2014). https://doi.org/10.1016/j.ijantimicag.2014.02.013
- Cheng, Y.Y., Tsai, T.H., Pharmacokinetics and biodistribution of the illegal food colorant rhodamine B in rats. J. agric. food chem., 65, 1078-1085 (2017). https://doi.org/10.1021/acs.jafc.6b04975
-
Zhong, H.E., Shaogui, Y.A.N.G., Yongming, J.U., Cheng, S.U.N., Microwave photocatalytic degradation of Rhodamine B using
$TiO_{2}$ supported on activated carbon: Mechanism implication. J. Environ. Sci., 21, 268-272 (2009). https://doi.org/10.1016/S1001-0742(08)62262-7 - Kul, D., Ghica, M.E., Pauliukaite, R., Brett, C.M., A novel amperometric sensor for ascorbic acid based on poly (Nile blue A) and functionalised multi-walled carbon nanotube modified electrodes. Talanta, 111, 76-84 (2013). https://doi.org/10.1016/j.talanta.2013.02.043
- Li, C., Huang, Y., Lai, K., Rasco, B.A., Fan, Y., Analysis of trace methylene blue in fish muscles using ultra-sensitive surface-enhanced Raman spectroscopy. Food Control, 65, 99-105 (2016). https://doi.org/10.1016/j.foodcont.2016.01.017
- Food and Agriculture Oragnization of the United Nations, 2018. The state of world fisheries and aquaculture. Rome, Italy, pp.1-227.
- Kang, H.S., Lee, S.B., Shin, D., Jeong, J., Hong, J.H., Rhee, G.S., Occurrence of veterinary drug residues in farmed fishery products in South Korea. Food Control, 85, 57-65 (2018). https://doi.org/10.1016/j.foodcont.2017.09.019
- Kang, H.S., Kwon, N.J., Jeong, J., Lee, K., Lee, H., Webbased Korean maximum residue limit evaluation tools: an applied example of maximum residue limit evaluation for trichlorfon in fishery products. Environ. Sci. Pollut. Res., 26(7), 7284-7299 (2019). https://doi.org/10.1007/s11356-019-04314-y
- Andersena, W.C., Turnipseed, S.B., Karbiwnyk, C.M., Lee, R.H., Clark, S.B., Rowe, W.D., Madson, M.R., Miller, K.E., Multiresidue method for the triphenylmethane dyes in fish: Malachite green, crystal (gentian) violet, and brilliant green. Anal. Chim. Acta, 637, 279-289 (2009). https://doi.org/10.1016/j.aca.2008.09.041
- Alimentarius, C., 2009. Guidelines for the design and implementation of national regulatory food safety assurance programme associated with the use of veterinary drugs in food producing animals. CAC/GL, 71. Rome, Italy, pp.1-42.
- Nebot, C., Iglesias, A., Barreiro, R., Miranda, J.M., Vazquez, B., Franco, C.M., Cepeda, A., A simple and rapid method for the identification and quantification of malachite green and its metabolite in hake by HPLC-MS/MS. Food Control, 31, 102-107 (2013). https://doi.org/10.1016/j.foodcont.2012.09.020
- Dubreil, E., Mompelat, S., Kromer, V., Guitton, Y., Danionc, M., Morinc, T., Hurtaud-Pessel, D., Verdon, E., Dyes residues in aquaculture products: Targeted and metabolomics mass spectrometric approaches to track their abuse. Food Chem., 294, 355-367 (2019). https://doi.org/10.1016/j.foodchem.2019.05.056
- Verdon,E., Andersen, W.C., 2017. Certain dyes as pharmacologically active substances in fishfarming and other aquaculture products. Chemical Analysis of Non-antimicrobial Veterinary Drug Residues in Food. Wiley, New Jersey. pp. 497-531.
- Xu, J.Z., Dai, L., Wu, B., Ding, T., Zhu, J.J., Lin, H., Chen, H.L., Shen, C.Y., Jiang, Y., Determination of methylene blue residues in aquatic products by liquid chromatography tandem mass spectrometry. J. Sep. Sci., 32, 4193-4199 (2009). https://doi.org/10.1002/jssc.200900364
- Xu, Y.J., Tian, X.H., Zhang, X.Z., Gong, X.H., Liu, H.H., Zhang, H.J., Huang, H., Zhang, L.M., Simultaneous determination of malachite green, crystal violet, methylene blue and the metabolite residues in aquatic products by ultra-performance liquid chromatography with electrospray ionization tandem mass spectrometry. J. Chromatogr. Sci., 50, 591-597 (2012). https://doi.org/10.1093/chromsci/bms054
- Zhao, L., Lucas, D., Multi residue analysis of veterinary drugs in bovine liver by lc-ms/ms. Aglient Tech. Inc., 5991-6096 (2015).
- Dasenaki, M.E., Thomaidis, N.S., Multi-residue determination of 115 veterinary drugs and pharmaceutical residues in milk powder, butter, fish tissue and eggs using liquid chromatography-tandem mass spectrometry. Anal. Chim. Acta, 880, 103-121 (2015). https://doi.org/10.1016/j.aca.2015.04.013
- Martin, F., Oberson, J.M., Meschiari, M., Munari, C., Determination of 18 water-soluble artificial dyes by LC-MS in selected matrices. Food Chem, 197, 1249-1255 (2016). https://doi.org/10.1016/j.foodchem.2015.11.067