DOI QR코드

DOI QR Code

Assessment of Noah land surface model-based soil moisture using GRACE-observed TWSA and TWSC

GRACE 관측 TWSA와 TWSC를 활용한 Noah 지면모형기반 토양수분 평가

  • Chun, Jong Ahn (Climate Analytics Department, Cliamte Services and Research Division, APEC Climate Center) ;
  • Kim, Seon Tae (Climate Analytics Department, Cliamte Services and Research Division, APEC Climate Center) ;
  • Lee, Woo-Seop (Climate Analytics Department, Cliamte Services and Research Division, APEC Climate Center) ;
  • Kim, Daeha (Climate Analytics Department, Cliamte Services and Research Division, APEC Climate Center)
  • 전종안 (APEC 기후센터, 기후사업본부 기후분석과) ;
  • 김선태 (APEC 기후센터, 기후사업본부 기후분석과) ;
  • 이우섭 (APEC 기후센터, 기후사업본부 기후분석과) ;
  • 김대하 (APEC 기후센터, 기후사업본부 기후분석과)
  • Received : 2020.02.24
  • Accepted : 2020.03.18
  • Published : 2020.04.30

Abstract

The Noah 3.3 Land Surface Model (LSM) was used to estimate the global soil moisture in this study and these soil moisture datasets were assessed against satellite-based and reanalysis soil moisture products. The Noah 3.3 LSM simulated soil moistures in four soil layers and root-zone soil moistures defined as a depth-weighted average in the first three soil layers (i.e., up to 1.0 m deep). The Noah LSM soil moisture products were then compared with a satellite-based soil moisture dataset (European Space Agency Climate Change Initiatives (ESA CCI) SM v04.4) and reanalysis soil moisture datasets (ERA-interim). In addition, the five major basins (Yangtze, Mekong, Mississippi, Murray-Darling, Amazon) were selected for the assesment with the Gravity Recovery and Climate Experiment (GRACE)-based Total Water Storage Anomaly (TWSA) and TWS Change (TWSC). The results revealed that high anomaly correlations were found in most of the Asia-Pacific regions including East Asia, South Asia, Australia, and Noth and South America. While the anomaly correlations in the Murray-Darling basin were somewhat low, relatively higher anomaly correlations in the other basins were found. It is concluded that this study can be useful for the development of soil moisture based drought indices and subsequently can be helpful to reduce damages from drought by timely providing an efficacious strategy.

이 연구에서는 Noah 3.3 지면모형을 이용하여 표층과 근역층(root-zone)의 토양함수비를 추정하고, 이를 위성기반 및 재분석 토양수분자료와 비교·검증하였다. 먼저, Noah 3.3 지면모형으로부터 추정한 4개 토양층 중 지면에 가까운 3개층(즉, 표층으로부터 1 m 깊이까지) 토양함수비를 이용하여 3개층의 깊이 가중평균값을 근역층 토양 함수비로 정의하였다. 이렇게 Noah 3.3 지면모형으로 추정한 토양함수비를 위성기반 표층 토양 함수비(European Space Agency Climate Change Initiatives Soil Moisture Product v04.4, ESA CCI SM v04.4)와 ERA-interim 재분석 표층 및 근역층 토양함수비와 비교·검증하였다. 또한, 전지구의 주요 5개 유역(Yangtze, Mekong, Mississippi, Murray-Darling, Amazon)에 대해 Gravity Recovery and Climate Experiment (GRACE) 관측 Total Water Storage Anomaly (TWSA) 와 TWS Change (TWSC)를 이용하여 비교·검증하였다. Noah 3.3 지면모형으로 산정한 토양수분 자료는 동아시아 지역과 남아시아 지역, 호주, 북미와 남미 등 대부분의 아시아·태평양지역에서 높은 아노말리 상관관계를 보였으며, 5개 유역에서 호주의 머레이-달링(Murray-Darling)유역에서 다소 낮은 상관관계를 보였으나, 나머지 4개 유역에서는 대체로 높은 상관성을 보였다. Noah 3.3 지면모형은 준실시간 토양수분 모의가 가능하기 때문에 이에 기반한 가뭄감시가 가능하며, 선제적 가뭄 대응 대책 마련에 활용성이 클 것으로 기대된다.

Keywords

References

  1. Balsamo, G., Beljaars, A., Scipal, K., Viterbo, P., Van den Hurk, B.J.J.M., Hirschi, M., and Betts, A.K. (2009). "A revised hydrology for the ECMWF model: Verification from field site to terrestrial water storage and impact in the integrated forecast system." Journal of Hydrometeorology, Vol. 10, No. 3, pp. 623-643. https://doi.org/10.1175/2008JHM1068.1
  2. Cammalleri, C., Micale, F., and Vogt, J. (2016). "A novel soil moisture-based Drought Severity Index (DSI) comining water deficit magnitude and frequency." Hydrological Processes, Vol. 30, pp. 289-301. https://doi.org/10.1002/hyp.10578
  3. Csiszar, I., and Gutman, G. (1999). "Mapping global land surface albedo from NOAA AVHRR." Journal of Geophysical Research, Vol. 104, No. D6, pp. 6215-6228. https://doi.org/10.1029/1998JD200090
  4. Dai, A. (2010). "Drought under global warming: A review." Wiley Interdisciplinary Reviews: Climate Change, Vol. 2, pp. 45-65. https://doi.org/10.1002/wcc.81
  5. Dai, A. (2011). "Characteristics and trends in various forms of the Palmer Drought Severity Index during 1900-2008." Journal of Geophysical Research, Vol. 116, D12115. https://doi.org/10.1029/2010JD015541
  6. Davis, T.W., Prentice, I.C., Stocker, B.D., Thomas, R.T., Whitley, R.J., Wang, H., Evans, B.J., Gallego-Sala, A.V., Sykes, M.T., and Cramer, W. (2017). "Simple processled algorithms for simulating habitats (splash v.1.0): Robust indices of radiation, evapotranspiration and plant-available moisture." Geoscientific Model Development, Vol. 10, pp. 689-708. https://doi.org/10.5194/gmd-10-689-2017
  7. de Roo, A.P.J., Wesseling, C., and van Deusen, W. (2000). "Physically based river basin modelling within a GIS: The LISFLOOD model." Hydrological Processes, Vol. 14, pp. 1981-1992. https://doi.org/10.1002/1099-1085(20000815/30)14:11/12<1981::AID-HYP49>3.0.CO;2-F
  8. Dracup, J.A., Lee, K.S., and Paulson Jr., E.G. (1980). "On the definitions of droughts." Water Resources Research, Vol. 16 No. 2, pp. 297-302.
  9. Ek, M.B., Mitchell, K.E., Lin, Y., Rogers, E., Grummann, P., Koren, V., Gayno, G., and Tarpley, J.D. (2003). "Implementation of Noah land surface model advances in the national centers for environmental prediction operational mesoscale Eta model." Journal of Geophysical Research, Vol. 108, p. 8851.
  10. Gruber, A., Scanlon, T., van der Schalie, R., Wanger, W., and Dorigo, W. (2019). "Evolution of the ESA CCI soil moisture climate data records and their underlying merging methodology." Earth System Science Data, Vol. 11, pp. 717-739. https://doi.org/10.5194/essd-11-717-2019
  11. Gutman, G., and Ignatov, A. (1997). "The derivation of green vegetation fraction from NOAA/AVHRR data for use in numerical weather prediction models." International Journal of Remote Sensing, Vol. 19, No. 8, pp. 1533-1543. https://doi.org/10.1080/014311698215333
  12. Heim, R.R.Jr. (2002). "A review of twentieth-century drought indices used in the United States." Bulletin of the American Meteorological Society, Vol. 83, pp. 1149-1165. https://doi.org/10.1175/1520-0477-83.8.1149
  13. Kumar, S.V., Peters-Lidard, C.D., Tian, Y., Houser, P.R., Geiger, J., Olden, S., Lighty, L., Eastman, J.L., Doty, B., Dirmeyer, P., Adams, J., Mitchell, K., Wood, E.F., and Sheffield, J. (2006). "Land information system: An interoperable framework for high resolution land surface modeling." Environmental Modelling and Software, Vol. 21, pp. 1402-1415. https://doi.org/10.1016/j.envsoft.2005.07.004
  14. Kuria, D.N., Koike, T., Hui, L., Tsutsui, H., and Graf, T. (2007). "Field-supported verification and improvement of a passive microwave surface emission model for rough, bare, and wet soil surfaces by incorporating shadowing effects." IEEE Transactions on Geoscience and Remote Sensing, Vol. 45, No. 5, pp. 1207-1216. https://doi.org/10.1109/TGRS.2007.894552
  15. Landerer, F.W., and Swenson, S.C. (2012). "Accuracy of scaled GRACE terrestrial water storage estimates." Water Resources Research, Vol. 48, W04531.
  16. Long, D., Longuevergne, L., and Scanlon, B.R. (2014). "Uncertainty in evapotranspiration from land surface modeling, remote sensing, and GRACE satellites." Water Resources Research, Vol. 50, pp. 1131-1151. https://doi.org/10.1002/2013WR014581
  17. Miralles, D.G., Holmes, T.R.H., de Jeu, R.A.M., Gash, J.H., Meesters, A.G.C.A., and Dolman, A.J. (2011). "Global land-surface evaporation estimated from satellite-based observations." Hydrology and Earth System Sciences, Vol. 15, pp. 453-469. https://doi.org/10.5194/hess-15-453-2011
  18. NASA Goddard Space Flight Center (GSFC) (2017). Land Information System (LIS) LIS 7.2 Users' Guide, accessed 11 January 2020, .
  19. Orth, R., and Seneviratne, S.I. (2015). "Introduction of a simple-model-based land surface dataset for Europe." Environmental Research Letter, Vol. 10, 044012. https://doi.org/10.1088/1748-9326/10/4/044012
  20. Perkins, S.E., Argueso, D., and White, C.J. (2015). "Relationships between climate variability, soil moisture, and Australian heatwaves." Journal of Geophysical Research: Atmospheres, Vol. 120, pp. 8144-8164. https://doi.org/10.1002/2015JD023592
  21. Robinson, D.A., and Kukla, G. (1985). "Maximum surface albedo of seasonally snow-covered lands in the northern hemisphere." Journal of Climate and Applied Meteorology, Vol. 24, No. 5, pp. 402-411. https://doi.org/10.1175/1520-0450(1985)024<0402:MSAOSS>2.0.CO;2
  22. Rodell, M., Houser, P.R., Jambor, U., Gottschalck, J., Mitchell, K., Meng, C.-J., Arsenault, K., Cosgrove, B., Radakovich, J., Bosilovich, M., Entin, J.K., Walker, J.P., Lohmann, D., and Toll, D. (2004). "The global land data assimilation system." Bulletin of the American Meteorological Society, Vol. 85, No. 3, pp. 381-394. https://doi.org/10.1175/BAMS-85-3-381
  23. Tucker, J.J., and Choudhury, B.J. (1987). "Satellite remote sensing of drought conditions." Remote Sensing of Environment, Vol. 23, pp. 243-251. https://doi.org/10.1016/0034-4257(87)90040-X
  24. Xia, Y., Cosgrove, B.A., Mitchell, K.E., Peters-Lidard, C.D., Ek, M.B., Kumar, S., Mocko, D., and Wei, H. (2016). "Basin-scale assessment of the land surface energy budget in the National Centers for Environmental Prediction operational and research NLDAS-2 systems." Journal of Geophysical Research: Atmospheres, Vol. 121, pp. 196-220. https://doi.org/10.1002/2015JD023889
  25. Zobler, L. (1986). A world soil file for global climate modeling. NASA Technical Memorandum #87802, NASA Goddard Institute for Space Studies, N.Y., U.S.