DOI QR코드

DOI QR Code

Distribution Analysis of Optimal Equipment Assignment Using a Genetic Algorithm

유전알고리즘을 이용하여 최적화된 방제 자원 배치안의 분포도 분석

  • 김혜진 (광운대학교 컴퓨터과학과) ;
  • 김용혁 (광운대학교 컴퓨터과학과)
  • Received : 2020.01.28
  • Accepted : 2020.04.20
  • Published : 2020.04.28

Abstract

As a plan for oil spill accidents, research to collect and analyze optimal equipment assignments is essential. However, studies that have diversified and analyzed the optimal equipment assignments for responding to oil spill accidents have not been preceded. In response to the need for analyzing optimal equipment assignments study, we devised a genetic algorithm for optimal equipment assignments. The designed genetic algorithm yielded 10,000 optimal equipment assignments. We clustered using the k-means algorithm. As a result, the two clusters of Yeosu, Daesan, and Ulsan, which are expected to be the largest spills, were clearly identified. We also projected 16-dimensional data in two dimensions via Sammon's mapping. The projected data were analyzed for distribution. We confirmed that results of the simulation were better than those of optimal equipment assignments included in the cluster.In the future, it will be possible to implement an approximate model with excellent performance based on this study.

해양 오염사고를 대비한 계획으로, 최적화된 배치안들을 수집하여 분석하는 연구가 필수적이지만, 해양 오염사고 대응을 위한 최적을 배치안을 다양화하고 분석한 연구는 아직 선행되지 않았다. 이러한 필요성에 따라, 우리는 방제자원 배치 최적화를 위한 유전알고리즘을 고안하고 이를 통해 최적의 방제 자원 배치안을 10,000 개 도출하였다. k-평균 알고리즘으로 군집화한 결과, 예상 최대 유출지역인 여수, 대산, 울산에 대하여 두 개의 군집으로 확연히 구분되었다. 우리는 이러한 군집을 새몬 맵핑을 통해 이차원으로 사영하여 배치안의 분포도를 분석하였고, 군집에 포함되는 배치안들이 그렇지 않은 배치안보다 시뮬레이션의 결과가 우수함을 확인했다. 향후, 본 연구를 기반으로 성능이 우수한 근사모델을 구현하는 것이 가능할 것으로 보인다.

Keywords

References

  1. G. Tyagi, R. Singh & A. Hussain. (2019, Apr). Applications of genetic algorithm in water resources management and optimization. International Conference on Advanced Computing and Software Engineering, (pp. 137-143).
  2. L. Wang, S. Guo, X. Li, B. Du & W. Xu. (2018). Distributed manufacturing resource selection strategy in cloud manufacturing. The International Journal of Advanced Manufacturing Technology, 94(9-12), 3375-3388. DOI: 10.1007/s00170-016-9866-8
  3. J. Pearl. (1984). Heuristics: Intelligent Search Strategies for Computer Problem Solving : United States : Addison-Wesley Longman Publishing Co.
  4. C. Blum & A. Roli. (2003). Metaheuristics in combinatorial optimization: overview and conceptual comparison. Association for Computing Machinery Computing Surveys, 35(3), 268-308. DOI : 10.1145/937503.937505
  5. Z. S. Dai & X. L. Wang. (2006). Optimal resource allocation on grid systems for maximizing service reliability using a genetic algorithm. Reliability Engineering & System Safety, 91(9), 1071-1082. DOI : 10.1016/j.ress.2005.11.0008
  6. V. Lavric, P. lancu & V. Plesu. (2004). Optimal water system topology through genetic algorithm under multiple contaminated-water sources constraint. Computer Aided Chemical Engineering, 18, 433-438. DOI: 10.1016/S1570-7946(04)80138-X
  7. C. Guerrero, I. Lera & C. Juiz. (2018). Genetic Algorithm for Multi-Objective Optimization of Container Allocation in Cloud Architecture. Journal of Grid Computing, 16(1), 113-135. DOI : 10.1007/S10723-017-9419-X
  8. J. H. Yun et al. (2009). A Study on Practical Strategies for Estimating the National Control Ability of Oil Spill Control. South Korea: Korea Coast Guard.
  9. H. J. Kim, J. Lee, J. H. Yun & Y. H. Kim. (2019, July). Optimal equipment assignment for oil spill response using a genetic algorithm. Genetic and Evolutionary Computation Conference Companion. (375-376).
  10. H. J. Kim & Y. H. Kim. (2019). Optimization of weapon target assignment using a genetic algorithm. Journal of Korean Institute of Intelligent Systems, 29(3), 176-181. DOI : 10.5391/JKIIS.2019.29.3.176
  11. K. W. C. Cardie & S. R. S. Schroedl. (2001). Constrained k -means clustering with background knowledge. International Conference on Machine Learning. ( 577-584).
  12. H. J. Kim & Y. H. Kim. (2019, Dec). Distribution analysis of optimal resource allocation for oil spill response. Korean Institute of Intelligent Systems Conference. (193-194).
  13. J. W. Sammon. (1969). A nonlinear mapping for data structure analysis. Institute of Electrical and Electronics Engineers Transactions on Computers, 18(5), 401-209. DOI : 10.1109/T-C.1969.222678
  14. Y. Jin. (2011). Surrogate-assisted evolutionary computation: recent advances and future challenges. Swarm and Evolutionary Computation, 1(2), 61-70. DOI : 10.1016/j.swevo.2011.05.001
  15. D. P. Yu & Y. H. Kim. (2019, July). Predictability on performance of surrogate-assisted evolutionary algorithm according to problem dimension. Genetic and Evolutionary Computation Conference Companion. (91-92).
  16. H. J. Kim & Y. H. Kim (2020), Optimal resource allocation using a genetic algorithm: application to weapon-target assignment and equipment assignment for oil spill response. Doctoral dissertation. Kwangwoon University, Seoul.