DOI QR코드

DOI QR Code

도로기상 서비스를 위한 실시간 자료처리 및 시각화

Real-time data processing and visualization for road weather services

  • 김대성 (대구대학교 일반대학원 통계학과) ;
  • 안숙희 (한국외국어대학교 대기환경연구센터) ;
  • 이채연 (한국외국어대학교 대기환경연구센터) ;
  • 윤상후 (대구대학교 수리빅데이터학부)
  • Kim, DaeSung (Department of Statistics, Daegu University) ;
  • Ahn, Sukhee (Research Center for Atmospheric Environment at Hankuk University of Foreign Studies) ;
  • Lee, Chaeyeon (Research Center for Atmospheric Environment at Hankuk University of Foreign Studies) ;
  • Yoon, Sanghoo (Division of Mathematics and Big Data Science, Daegu University)
  • 투고 : 2020.02.07
  • 심사 : 2020.04.20
  • 발행 : 2020.04.28

초록

산업 기술이 발달함에 따라 편리함을 추구하게 되면서 교통수단 역시 발달하고 있다. 대도시에 거주하는 많은 사람들은 버스, 택시, 자가용 등의 교통수단을 이용하여 출퇴근을 하고 있고 여가를 즐기므로 이동시 발생하는 교통사고의 피해를 줄이기 위한 연구가 필요하다. 본 연구는 실시간으로 도로단위 강우량을 추정하는 법을 다루고 있다. 이를 위해 기상청에서 제공하는 강우 관측 자료와 강우 레이더자료를 실시간으로 수집하여 통합 데이터베이스를 만들고 이를 크리깅 방법을 통해 도로단위 강우량으로 추정하였다. 이 외에도 도로의 실시간 교통소통정보도 강우정보와 융합하여 인터렉티브하게 시각화하는 연구를 수행하였다.

As industrial technology advances, convenience is also being developed. Many people living in big cities are commuting using transportation such as buses, taxis, cars, etc. and enjoy leisure, so research is needed to reduce the damages caused by traffic accidents. This study deals with estimating road-level rainfall in real-time. A rainfall observation data and radar data provided by the Korea meteorological administration were collected in real-time to create an integrated database, which was estimated as road-level rainfall by universal kriging method. Besides, we conducted a study to interactively visualization of mash-up road traffic information in real-time with integrating rainfall information.

키워드

참고문헌

  1. Y. S. Cho, K. J. Lee, L. K. Jeong, Y. H. No & S. K. Yoon (2015). The effect of road weather factors on traffic accident -Focused on Busan area- . Journal of the Korean Data & Information Science Society , 26(3), 661-668. https://doi.org/10.7465/jkdi.2015.26.3.661
  2. H. J. Park, S. H. Joo & C. Oh. (2014). Development of an Evaluation Index for Identifying Freeway Traffic Safety Based on Integrating RWIS and VDS Data. Journal of Korean Society of Transportation, 32, 441-451. https://doi.org/10.7470/jkst.2014.32.5.441
  3. J. T. Park, J. Y. Hong & S. B. Lee. (2010). Development of Traffic Accident Safety Index under Different Weather Conditions. Journal of Korean Society of Transportation, 28, 157-163.
  4. Y. K. Ham, Y. J. Jeon, K. H. Kim & S. H. Kim. (2015). The Types of Road Weather Big Data and the Strategy for Their Use: Case Analysis. korean society for Big Data, 2(2), 129-140.
  5. Y. N. Lee & K. W. Kim. (2007). A study on the relationships between the fatal traffic accidents and meteorological factors. The Korean Association of Police Science, 6(3), 125-164.
  6. M. Yang & S. Yoon. (2018). The method of rainfall prediction for road weather serviceㅏ. Journal of the Korean Data & Information Science Society. 29(2), 403-413. https://doi.org/10.7465/jkdi.2018.29.2.403
  7. B. S. Kim, J. B. Hong, H. S. Kim & K. H. Choi. (2007). Combining Radar and Rain Gauge Rainfall Estimate for Flood Forecasting Using Conditional Merging Method. Journal of The Korean society of Civil Engineers, 27(3B), 255-265.
  8. J. Lim & S. Yoon. (2019). Comparison of quantitative precipitation estimate using geostatistical models. Journal of the Korean Data & Information Science Society. 30(1), 77-89. https://doi.org/10.7465/jkdi.2019.30.1.77
  9. H. Y. Ko, K. Y. Nam, C. K. Lee & H. S. Jeong. (2013). Estimation of Quantitative Radar Precipitation Using Space Correction Technique. Korean Meteorological Society, 518-519.
  10. S. W. Sim & K. J. Choi. (2009). Classification of Freeway Traffic Condition by the impacts of Road Weather Factors. Journal of The Korean society of Civil Engineers, 29(7D), 685-691.
  11. H. K. Lee (2008). A Study on Contents of Map Education Using the Google Map API Mashup. Thesis for a master's. Ewha Woman University, Seoul.
  12. S. W. Lee, S. W. Lee, S. Y. Lee, & W. H. Hong (2014). A Study on Estimation of the Greenhouse Gas Emission from the Road Transportation Infrastructure Using the Geostatistical Analysis -A Case of the Daegu-. Journal of the korean society for geospatial information science, 22(1), 9-17.
  13. P. Hiemstra & M. P. Hiemstra (2013). Package ‘automap’. compare, 105, 10.
  14. C. W. Na & B. W. On. (2019). A proposal on a proactive crawling approach with analysis of state-of-the-art web crawling algorithms. Journal of Korean Society for Internet Information, 20(3), 43-59.
  15. C. Graul & M. C. Graul (2016). Package 'leafletR'.