DOI QR코드

DOI QR Code

Is-A Node Type Modeling Methodology to Improve Pattern Query Performance in Graph Database

  • Park, Uchang (Dept. of Computer Engineering, Duksung Women's University)
  • 투고 : 2020.02.06
  • 심사 : 2020.04.17
  • 발행 : 2020.04.29

초록

그래프 데이터베이스에서 패턴질의는 관계 데이터베이스 SQL과 비교하여 질의의 쉬운 표현, 높은 질의 처리 성능을 기대할 수 있는 장점이 있다. 그러나 그래프 데이터베이스는 관계 데이터베이스와 달리 논리적 데이터 모델을 구축하는 방법론이 정의되어 있지 않아 모델링에 따라 패턴 질의의 장점을 활용하지 못할 수 있다. 본 연구는 그래프 모델링 과정 중 나타나는 is-a 노드 모델링 방법에서 일반화 모델로 설계할 경우와 특수화 모델로 설계할 경우 그래프 패턴질의의 성능 차이가 있음을 실험하였다. 실험 결과 is-a 노드 설계를 특수화 모델로 설계할 경우 더 우수한 성능을 얻을 수 있음을 보였다. 또 추가로 패턴질의를 작성할 때 변수를 노드나 간선에 바인딩시키는 경우 그렇지 않는 경우보다 성능이 우수할 수 있음을 보였다. 실험 결과들은 그래프 데이터베이스에서 패턴질의에 대한 is-a 노드 모델링 방법 및 그래프 질의 작성 방법으로 제시될 수 있다.

The pattern query in graph database has advantages of easy query expression and high query processing performance compared to relational database SQL. However, unlike the relational database, the graph database may not utilize the advantages of pattern query depending on modeling because the methodology for building the logical data model is not defined. In this study, in the is-a node modeling method that appears during the graph modeling process, we experiment that there is a difference in performance between graph pattern query when designing with a generalization model and designing with a specialization model. As a result of the experiment, it was shown that better performance can be obtained when the is-a node is designed as a specialization model. In addition, when writing a pattern query, we show that if a variable is bound to a node or edge, performance may be better than that of the variable of not bounded. The experimental results can be presented as an is-a node modeling method for pattern query and a graph query writing method in the graph database.

키워드

참고문헌

  1. Renzo Angles and Claudio Gutierrez, et al., "An Introduction to Graph Data Management," Graph Data Management, Springer, pp. 1-43, 2018.
  2. Chad Vicknair, et al., "A Comparison of a Graph Database and a Relational Database," ACMSE '10, Oxford, MS, USA, Apr. 15-17, 2010.
  3. https://neo4j.com/developer/data-modeling/, [accessed: Aug. 1, 2019]
  4. Subhrajyoti Bordoloi and Bichitra Kalita, "Designing Graph Database Models from Existing Relational Databases," International Journal of Computer Applications, Vol. 74, No. 1, pp. 25-31, Jul. 2013. https://doi.org/10.5120/12850-9303
  5. https://neo4j.com/developer/cypher-query-language/, [accessed: Apr. 1, 2020]
  6. Jurgen Holsch and et al., "On the Performance of Analytical and Pattern Matching Graph Queries in Neo4j and a Relational Database," Workshop Proceedings of the EDBT/ICDT 2017 Joint Conference, Venice, Italy, Mar. 2017.
  7. Shalini Batra and Charu Tyagi, "Comparative Analysis of Relational And Graph Databases," International Journal of Soft Computing and Engineering (IJSCE) Vol. 2, No. 2, pp. 509-512, May 2012.
  8. Alexandra Martinez, et al., "A Comparison between a Relational Database and a Graph Database in the context of a Personalized Cancer Treatment Application," Proceedings of the 10th Alberto Mendelzon International Workshop on Foundations of Data Management, Jun. 2016.
  9. Enhanced Entity-Relationship Model, http://jcsites.juniata.edu/faculty/rhodes/dbms/ermodel.htm, [accessed: Aug. 1, 2019]
  10. https://www.cs.uct.ac.za/mit_notes/database/htmls/chp07.html, [accessed: Aug. 1, 2019]
  11. Thomas Frisendal, Graph Data Modeling for NoSQL and SQL, Technics Publications, 2016.
  12. Neo4j, https://neo4j.com/, [accessed: Aug. 1, 2019]
  13. Andrey Gubichev and Manuel Then, "Graph Pattern Matching - Do We Have to Reinvent the Wheel?," GRADES'14, June 22-27 2014, Snowbird, UT, USA 2014.
  14. Renzo Angeles, "The Property Graph Database Model," Alberto Mendelzon International Workshop on Foundations of Data Management(AMW), Cali, Colombia, May 21-25, 2018.
  15. warm cache and cold cache, https://stackoverflow.com/questions/22756092/what-does-it-mean-by-cold-cache-and-warm-cache-concept, [accessed: Aug. 1, 2019]

피인용 문헌

  1. 그래프 데이터베이스 기반 악성코드 행위 탐지 기법 vol.11, pp.4, 2020, https://doi.org/10.22156/cs4smb.2021.11.04.055