Acknowledgement
The author(s) received no financial support for the research, authorship, and/or publication of this article.
References
- Akgoz, B. and Civalek, O. (2012), "Investigation of size effects on static response of single-walled carbon nanotubes based on strain gradient elasticity", Int. J. Computat. Methods, 9(2), 1240032. https://doi.org/10.1142/S0219876212400324
- Ansari, R. and Rouhi, H. (2013), "Nonlocal Flugge shell model for vibrations of double-walled carbon nanotubes with different boundary conditions", Int. J. Appl. Mech., 80, 021006-1. https://doi.org/10.1142/S179329201250018X
- Asghar, S., Hussain, M. and Naeem, M. (2019), "Non-local effect on the vibration analysis of double walled carbon nanotubes based on Donnell shell theory", Physica E: Low-dimens. Syst. Nanostruct., 116, 113726. https://doi.org/10.1016/j.physe.2019.113726
- Asghar, S., Naeem, M.N., Hussain, M., Taj, M. and Tounsi, A. (2020), "Prediction and assessment of nolocal natural frequencies DWCNTs: Vibration analysis", Comput. Concrete, Int. J., 25(2), 133-144. https://doi.org/10.12989/cac.2020.25.2.133
- Avcar, M. (2015), "Effects of rotary inertia shear deformation and non-homogeneity on frequencies of beam", Struct. Eng. Mech., Int. J., 55(4), 871-884. https://doi.org/10.12989/sem.2015.55.4.871
- Avcar, M. (2019), "Free vibration of imperfect sigmoid and power law functionally graded beams", Steel Compos. Struct., Int. J., 30(6), 603-615. https://doi.org/10.12989/scs.2019.30.6.603
- Azrar, A., Azrar, L. and Aljinaidi, A.A. (2011), "Length scale effect analysis on vibration behavior of single-walled Carbon Nanotubes with arbitrary boundary conditions", Revue de Mecanique Applique et Theorique, 2, 475-485.
- Chavan, S.G. and Lal, A. (2017), "Bending behavior of SWCNT reinforced composite plates", Steel Compos. Struct., Int. J., 24(5), 537-548. https://doi.org/10.12989/scs.2017.24.5.537
- Civalek, O., Ersoy, H., Numanoglu, H.M. and Akgoz, B. (2018), "Small size and rotary inertia effects on the natural frequencies of carbon nanotubes", Curved Layer. Struct., 5(1), 273-279. https://doi.org/10.1515/cls-2018-0020
- Duan, W.H., Wang, C.M. and Zhang, Y.Y. (2007), "Calibration of nonlocal scaling effect parameter for free vibration of carbon nanotubes by molecular dynamic", J. Appl. Phys., 101(2), 024305. https://doi.org/10.1063/1.2423140
- Ebrahimi, F. and Habibi, S. (2017), "Low-velocity impact response of laminated FG-CNT reinforced composite plates in thermal environment", Adv. Nano Res., Int. J., 5(2), 69-97. https://doi.org/10.12989/anr.2017.5.2.069
- Elishakoff, I. and Pentaras, D. (2009), "Fundamental natural frequencies of double-walled carbon nanotubes", J. Sound Vib., 322, 652-664. https://doi.org/10.1016/j.jsv.2009.02.037
- Emdadi, M., Mohammadimehr, M. and Navi, B.R. (2019), "Free vibration of an annular sandwich plate with CNTRC facesheets and FG porous cores using Ritz method", Adv. Nano Res., Int. J., 7(2), 109-123. https://doi.org/10.12989/anr.2019.7.2.109
- Fatahi-Vajari, A., Azimzadeh, Z. and Hussain, M. (2019), "Nonlinear coupled axial-torsional vibration of single-walled carbon nanotubes using Galerkin and Homotopy perturbation method", Micro Nano Lett., 14(14), 1366-1371. https://doi.org/10.1049/mnl.2019.0203
- Fazelzadeh, S.A. and Ghavanloo, E. (2012a), "Nonlocal anisotropic elastic shell model for vibrations of single-walled carbon nanotubes with arbitrary chirality", Compos. Struct., 94(3), 1016-1022. https://doi.org/10.1016/j.compstruct.2011.10.014
- Fereidoon, A., Rafiee, R. and Moghadam, R.M. (2013), "A modal analysis of carbon-nanotube-reinforced polymer by using a multiscale finite-element method", Mech. Compos. Mater., 49(3), 325-332. https://doi.org/10.1007/s11029-013-9350-6
- Flugge, S. (1973), Stresses in Shells, 2nd Edition, Springer, Berlin, Germany.
- Gao, Y. and An, L. (2010), "A nonlocal elastic anisotropic shell model for microtubule buckling behaviors in cytoplasm", Physica E: Low-dimens. Syst. Nanostruct., 42(9), 2406-2415. https://doi.org/10.1016/j.bbrc.2009.07.042
- Ghavanloo, E. and Fazelzadeh, S.A. (2012b), "Vibration characteristics of single-walled carbon nanotubes based on an anisotropic elastic shell model including chirality effect", Appl. Mathe. Model., 36(10), 4988-5000. https://doi.org/10.1016/j.apm.2011.12.036
- Gibson, R.F., Ayorinde, E.O. and Wen, Y.F. (2007), "Vibrations of carbon nanotubes and their composites: a review", Compos. Sci. Technol., 67(1), 1-28. https://doi.org/10.1016/j.compscitech.2006.03.031
- Han, J., Globus, A., Jaffe, R. and Deardorff, G. (1997), "Molecular dynamics simulations of carbon nanotube-based gears", Nanotechnology, 8(3), 95. https://doi.org/10.1088/0957-4484/8/3/001
- Heydarpour, Y., Aghdam, M.M. and Malekzadeh, P. (2014), "Free vibration analysis of rotating functionally graded carbon nanotube-reinforced composite truncated conical shells", Compos. Struct., 117, 187-200. http://doi.org/10.1016/j.compstruct.2014.06.023
- Hussain, M. and Naeem, M.N. (2017), "Vibration analysis of single-walled carbon nanotubes using wave propagation approach", Mech. Sci., 8(1), 155-164. https://doi.org/10.5194/ms-8-155-2017
- Hussain, M. and Naeem, M. (2018a), "Vibration of single-walled carbon nanotubes based on Donnell shell theory using wave propagation approach", Chapter, Intechopen, Novel Nanomaterials - Synthesis and Applications. ISBN 978-953-51-5896-7 https://doi.org/10.5772/intechopen.73503
- Hussain, M. and Naeem, M.N. (2018b), "Effect of various edge conditions on free vibration characteristics of rectangular plates", Chapter, Intechopen, Advance Testing and Engineering. ISBN 978-953-51-6706-8
- Hussain, M. and Naeem, M. (2019a), "Vibration characteristics of single-walled carbon nanotubes based on non-local elasticity theory using wave propagation approach (WPA) including chirality", In: Perspective of Carbon Nanotubes.
- Hussain, M. and Naeem, M.N. (2019b), "Effects of ring supports on vibration of armchair and zigzag FGM rotating carbon nanotubes using Galerkin's method", Compos.: Part B. Eng., 163, 548-561. https://doi.org/10.1016/j.compositesb.2018.12.144
- Hussain, M. and Naeem, M. (2019c), "Rotating response on the vibrations of functionally graded zigzag and chiral single walled carbon nanotubes", Appl. Mathe. Model., 75, 506-520. https://doi.org/10.1016/j.apm.2019.05.039
- Hussain, M. and Naeem, M.N. (2020a), "Mass density effect on vibration of zigzag and chiral SWCNTs", J. Sandw. Struct. Mater. https://doi.org/10.1177/1099636220906257
- Hussain, M. and Naeem, M.N. (2020b), "On mixing the Rayleigh-Ritz formulation with Hankel's function for vibration of fluidfilled Fluid-filled cylindrical shell", J. Adv. Concrete Constr., 1099636220906257. https://doi.org/10.1177/1099636220906257
- Hussain, M., Naeem, M.N., Shahzad, A. and He, M. (2017), "Vibrational behavior of single-walled carbon nanotubes based on cylindrical shell model using wave propagation approach", AIP Advances, 7(4), 045114. https://doi.org/10.1063/1.4979112
- Hussain, M., Naeem, M., Shahzad, A. and He, M. (2018a), "Vibration characteristics of fluid-filled functionally graded cylindrical material with ring supports", Chapter, Intechopen, Computational Fluid Dynamics. ISBN 978-953-51-5706-9 https://doi.org/10.5772 /intechopen.72172
- Hussain, M., Naeem, M.N., Shahzad, A., He, M.G. and Habib, S. (2018b), "Vibrations of rotating cylindrical shells with functionally graded material using wave propagation approach", IMechE Part C: J. Mech. Eng. Sci., 232(23), 4342-4356. https://doi.org/10.1177/0954406218802320
- Hussain, M., Naeem, M.N. and Isvandzibaei, M. (2018c), "Effect of Winkler and Pasternak elastic foundation on the vibration of rotating functionally graded material cylindrical shell", Proceedings of the Institution of Mechanical Engineers, Part C: J. Mech. Eng. Sci., 232(24), 4564-4577. https://doi.org/10.1177/0954406217753459
- Hussain, M., Naeem, M.N., Tounsi, A. and Taj, M. (2019a), "Nonlocal effect on the vibration of armchair and zigzag SWCNTs with bending rigidity", Adv. Nano Res., Int. J., 7(6), 431-442. https://doi.org/10.12989/anr.2019.7.6.431
- Hussain, M., Naeem, M.N. and Taj, M. (2019b), "Effect of length and thickness variations on the vibration of SWCNTs based on Flugge's shell model", Micro Nano Lett., 15(1), 1-6. https://doi.org/10.1049/mnl.2019.0309
- Hussain, M., Naeem, M.N. and Taj, M. (2019c), "Vibration characteristics of zigzag and chiral FGM rotating carbon nanotubes sandwich with ring supports", J. Mech. Eng. Sci., Part C, 233(16), 5763-5780. https://doi.org/10.5772/intechopen.85948
- Hussain, M., Naeem, M.N. and Tounsi, A. (2020a), "Simulating vibration of single-walled carbon nanotube based on Relagh-Ritz Method", Adv. Nano Res., Int. J., 8(3), 221-234. https://doi.org/10.12989/anr.2020.8.3.221
- Hussain, M., Naeem, M.N. and Tounsi, A. (2020b), "Numerical study for nonlocal vibration of orthotropic SWCNTs based on Kelvin's model", Adv. Concrete Constr., Int. J., 9(3), 301-312. https://doi.org/10.12989/acc.2020.9.3.301
- Jorio, A., Saito, R., Hafner, J.H., Lieber, C.M., Hunter, M., McClure, T., Dresselhaus, G. and Dresselhaus, M.S. (2001), "Structural (n,m) Determination of Isolated Single-Wall Carbon Nanotubes by Resonant Raman Scattering", Phys. Rev. Lett., 86(6), 1118-1121. https://doi.org/10.1103/PhysRevLett.86.1118
- Karami, B., Janghorban, M. and Tounsi, A. (2017), "Effects of triaxial magnetic field on the anisotropic nanoplates", Steel Compos. Struct., Int. J., 25(3), 361-374. https://doi.org/10.12989/scs.2017.25.3.361
- Kotakoski, J., Krasheninnikov, A.V. and Nordlund, K. (2006), "Energetics, structure, and long-range interaction of vacancytype defects in carbon nanotubes: Atomistic simulations", Phys. Rev. B, 74, 245420/1-5. https://doi.org/10.12989/scs.2018.28.1.099
- Kulathunga, D.D.T.K., Ang, K.K. and Reddy, J.N. (2009), "Accurate modeling of buckling of single-and double-walled carbon nanotubes based on shell theories", J. Phys.: Condensed Matter, 21(43), 435301. https://doi.org/10.1088/0953-8984/21/43/435301
- Madani, H., Hosseini, H. and Shokravi, M. (2016), "Differential cubature method for vibration analysis of embedded FG-CNTreinforced piezoelectric cylindrical shells subjected to uniform and non-uniform temperature distributions", Steel Compos. Struct., Int. J., 22(4), 889-913. https://doi.org/10.12989/scs.2016.22.4.889
- Mehar, K. and Panda, S.K. (2016a), "Geometrical nonlinear free vibration analysis of FG-CNT reinforced composite flat panel under uniform thermal field", Compos. Struct., 143, 336-346. https://doi.org/10.1016/j.compstruct.2016.02.038
- Mehar, K. and Panda, S.K. (2016b), "Free vibration and bending behaviour of CNT reinforced composite plate using different shear deformation theory", Proceedings of IOP Conference Series: Materials Science and Engineering, 115(1), 012014. https://doi.org/10.1088/1757-899X/115/1/012014
- Mehar, K. and Panda, S.K. (2018a), "Dynamic response of functionally graded carbon nanotube reinforced sandwich plate", Proceedings of IOP Conference Series: Materials Science and Engineering, 338(1), p. 012017. https://doi.org/10.1088/1757-899X/338/1/012017
- Mehar, K. and Panda, S.K. (2018b), "Thermal free vibration behavior of FG-CNT reinforced sandwich curved panel using finite element method", Polym. Compos., 39(8), 2751-2764. https://doi.org/10.1002/pc.24266
- Mehar, K. and Panda, S.K. (2018c), "Elastic bending and stress analysis of carbon nanotube-reinforced composite plate: Experimental, numerical, and simulation", Adv. Polym. Technol., 37(6), 1643-1657. https://doi.org/10.1002/adv.21821
- Mehar, K. and Panda, S.K. (2018d), "Thermoelastic flexural analysis of FG-CNT doubly curved shell panel", Aircr. Eng. Aerosp. Technol., 90(1), 11-23. https://doi.org/10.1108/AEAT-11-2015-0237
- Mehar, K. and Panda, S.K. (2018e), "Nonlinear finite element solutions of thermoelastic flexural strength and stress values of temperature dependent graded CNT-reinforced sandwich shallow shell structure", Struct. Eng. Mech., Int. J., 67(6), 565-578. https://doi.org/10.12989/sem.2018.67.6.565
- Mehar, K. and Panda, S.K. (2019), "Multiscale modeling approach for thermal buckling analysis of nanocomposite curved structure", Adv. Nano Res., Int. J., 7(3), 181-190. https://doi.org/10.12989/anr.2019.7.3.181
- Mehar, K., Panda, S.K., Dehengia, A. and Kar, V.R. (2016), "Vibration analysis of functionally graded carbon nanotube reinforced composite plate in thermal environment", J. Sandw. Struct. Mater., 18(2), 151-173. https://doi.org/10.1177/1099636215613324
- Mehar, K., Panda, S.K. and Mahapatra, T.R. (2017a), "Thermoelastic nonlinear frequency analysis of CNT reinforced functionally graded sandwich structure", Eur. J. Mech.-A/Solids, 65, 384-396. https://doi.org/10.1016/j.euromechsol.2017.05.005
- Mehar, K., Panda, S.K., Bui, T.Q. and Mahapatra, T.R. (2017b), "Nonlinear thermoelastic frequency analysis of functionally graded CNT-reinforced single/doubly curved shallow shell panels by FEM", J. Thermal Stress., 40(7), 899-916. https://doi.org/10.1080/01495739.2017.1318689
- Mehar, K., Panda, S.K. and Mahapatra, T.R. (2017c), "Theoretical and experimental investigation of vibration characteristic of carbon nanotube reinforced polymer composite structure", Int. J. Mech. Sci., 133, 319-329. https://doi.org/10.1016/j.ijmecsci.2017.08.057
- Mehar, K., Panda, S.K. and Patle, B.K. (2017d), "Thermoelastic vibration and flexural behavior of FG-CNT reinforced composite curved panel", Int. J. Appl. Mech., 9(4), 1750046. https://doi.org/10.1142/S1758825117500466
- Mehar, K., Mahapatra, T.R., Panda, S.K., Katariya, P.V. and Tompe, U.K. (2018a), "Finite-element solution to nonlocal elasticity and scale effect on frequency behavior of shear deformable nanoplate structure", J. Eng. Mech., 144(9), 04018094. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001519
- Mehar, K., Panda, S.K. and Mahapatra, T.R. (2018b), "Thermoelastic deflection responses of CNT reinforced sandwich shell structure using finite element method", Scientia Iranica, 25(5), 2722-2737.
- Mehar, K., Panda, S.K. and Patle, B.K. (2018c), "Stress, deflection, and frequency analysis of CNT reinforced graded sandwich plate under uniform and linear thermal environment: A finite element approach", Polym. Compos., 39(10), 3792-3809. https://doi.org/10.1002/pc.24409
- Mehar, K., Panda, S.K. and Mahapatra, T.R. (2018d), "Nonlinear frequency responses of functionally graded carbon nanotubereinforced sandwich curved panel under uniform temperature field", Int. J. Appl. Mech., 10(3), 1850028. https://doi.org/10.1142/S175882511850028X
- Mehar, K., Panda, S.K., Devarajan, Y. and Choubey, G. (2019), "Numerical buckling analysis of graded CNT-reinforced composite sandwich shell structure under thermal loading", Compos. Struct., 216, 406-414. https://doi.org/10.1016/j.compstruct.2019.03.002
- Moghadam, R.M., Hosseini, S.A. and Salehi, M. (2014), "The influence of Stone-Thrower-Wales defect on vibrational characteristics of single-walled carbon nanotubes incorporating Timoshenko beam element", Physica E: Low-dimens. Syst. Nanostruct.res, 62, 80-89. https://doi.org/10.1016/j.physe.2014.04.008
- Mohammadimehr, M. and Alimirzaei, S. (2016), "Nonlinear static and vibration analysis of Euler-Bernoulli composite beam model reinforced by FG-SWCNT with initial geometrical imperfection using FEM", Struct. Eng. Mech., Int. J., 59(3), 431-454. https://doi.org/10.12989/sem.2016.59.3.431
- Natsuki, T., Endo, M. and Tsuda, H. (2006), "Vibration analysis of embedded carbon nanotubes using wave propagation approach", J. Appl. Phys., 99(3), 034311. https://doi.org/10.1063/1.2170418
- Paliwal, D.N., Kanagasabapathy, H. and Gupta, K.M. (1995), "The large deflection of an orthotropic cylindrical shell on a Pasternak foundation", Compos. Struct., 31(1), 31-37. https://doi.org/10.1016/0263-8223(94)00068-9
- Rafiee, R. and Moghadam, R.M. (2012), "Simulation of impact and post-impact behavior of carbon nanotube reinforced polymer using multi-scale finite element modeling", Computat. Mater. Sci., 63, 261-268. https://doi.org/10.1016/j.commatsci.2012.06.010
- Rouhi, H., Ansari, R. and Arash, B. (2013), "Vibrational analysis of double-walled carbon nanotubes based on the nonlocal Donnell shell theory via a new numerical approach", Iran J. Sci Technol. Transact. B-Eng., 37, 91-105.
- Selim, M.M. (2010), "Torsional vibration of carbon nanotubes under initial compression stress", Brazil. J. Phys., 40(3), 283-287. http://dx.doi.org/10.1590/S0103-97332010000300004
- Semmah, A., Heireche, H., Bousahla, A.A. and Toumsi, A. (2019), "Thermal buckling analysis of SWBNNT on Winkler foundation by nonlocal FSDT", Adv. Nano Res., Int. J., 7(2), 89-98. https://doi.org/10.12989/anr.2019.7.2.089
- Sharma, P., Singh, R. and Hussain, M. (2019), "On modal analysis of axially functionally graded material beam under hygrothermal effect", Proceedings of the Institution of Mechanical Engineers, Part C: J. Mech. Eng. Sci., 234(5), 1085-1101. https://doi.org/10.1177/0954406219888234
- Sofiyev, A.H. and Avcar, M. (2010), "The stability of cylindrical shells containing an FGM layer subjected to axial load on the Pasternak foundation", Engineering, 2(4), 228-236. https://doi.org/10.4236/eng.2010.24033
- Swaddiwudhipong, S., Tian, J. and Wang, C.M. (1995), "Vibrations of cylindrical shells with intermediate supports", J. Sound Vib., 187, 69-93. https://doi.org/10.1006/jsvi.1995.0503
- Taj, M., Safeer, M., Hussain, M., Naeem, M.N., Ahmad, M., Abbas, K., Khan, A.Q. and Tounsi, A. (2020), "Effect of external force on buckling of cytoskeleton intermediate filaments within viscoelastic media", Comput. Concrete, Int. J., 25(3), 205-214. https://doi.org/10.12989/cac.2020.25.3.205
- Tohidi, H., Hosseini-Hashemi, S.H. and Maghsoudpour, A. (2018), "Size-dependent forced vibration response of embedded micro cylindrical shells reinforced with agglomerated CNTs using strain gradient theory", Smart Struct. Syst., Int. J., 22(5), 527-546. https://doi.org/10.12989/sss.2018.22.5.527
- Usuki, T. and Yogo, K. (2009), "Beam equations for multi-walled carbon nanotubes derived from Flugge shell theory", Proceedings of Royal Society A, 465(2104). https://doi.org/10.1098/rspa.2008.0394
- Wang, J. and Gao, Y. (2016), "Nonlocal orthotropic shell model applied on wave propagation in microtubules", Appl. Mathe. Model., 40(11-12), 5731-5744. https://doi.org/10.1016/j.apm.2016.01.013
- Wang, V. and Liew, K.M. (2007), "Application of nonlocal continuum mechanics to static analysis of micro-and nanostructures", Phys. Lett. A, 363, 236-242. http://dx.doi.org/10.1016/j.physleta.2006.10.093
- Zhang, Y.Y., Wang, C.M. and Tan, V.B.C. (2009), "Assessment of Timoshenko beam models for vibrational behavior of singlewalled carbon nanotubes using molecular dynamics", Adv. Appl. Math. Mech., 1, 89-106.
- Zou, R.D. and Foster, C.G. (1995), "Simple solution for buckling of orthotropic circular cylindrical shells", Thin-Wall. Struct., 22(3), 143-158. https://doi.org/10.1016/0263-8231(94)00026-V