DOI QR코드

DOI QR Code

Enhanced Electrochemical Performance of NaxFe2(CN)6 Positive Electrode Materials for Lithium-ion Batteries

리튬이온 이차전지용 양극물질로서 NaxFe2(CN)6의 전기화학적 성능개선 연구

  • Yoo, Seong Tae (Department of Chemical Engineering and Biotechnology, Korea Polytechnic University) ;
  • Yoon, Seung Ju (Department of Chemical Engineering and Biotechnology, Korea Polytechnic University) ;
  • Kang, Jeong Min (Department of Chemical Engineering and Biotechnology, Korea Polytechnic University) ;
  • Kim, Haebeen (Graduate School of Knowledge-based Technology and Energy, Korea Polytechnic University) ;
  • Ryu, Ji Heon (Graduate School of Knowledge-based Technology and Energy, Korea Polytechnic University)
  • 유성태 (한국산업기술대학교 생명화학공학과) ;
  • 윤승주 (한국산업기술대학교 생명화학공학과) ;
  • 강정민 (한국산업기술대학교 생명화학공학과) ;
  • 김해빈 (한국산업기술대학교 지식기반기술.에너지대학원) ;
  • 류지헌 (한국산업기술대학교 지식기반기술.에너지대학원)
  • Received : 2020.02.04
  • Accepted : 2020.02.11
  • Published : 2020.02.28

Abstract

The Prussian blue analogues of Fe2(CN)6 and NaxFe2(CN)6 are prepared by precipitation method and evaluated the electrochemical characteristics as positive electrode materials for lithium-ion batteries (LIBs) because of their low cost. Fe2(CN)6 shows a low reversible capacity of 34.6 mAh g-1, whereas sodium-containing NaxFe2(CN)6 exhibits a reversible capacity of 107.5 mAh g-1 when the discharge process proceeds first. When charging is first carried out to remove sodium in the structure, the reversible capacity of 114.1 mAh g-1 is achieved and the cycle performance is further improved. In addition, Nax-Fe2(CN)6 is synthesized at 0℃, room temperature (RT), and 60℃, respectively. Regardless of the synthesis temperature, NaxFe2(CN)6 shows similar initial reversible capacity, but the crystallite size is formed smaller and improved cycle performance when synthetic temperature is lower. The sample synthesized at 0℃ shows a reversible capacity of 86.4 mAh g-1 at the 120th cycle and maintains 76.8% of the initial capacity.

프러시안 블루 유사체(Prussian blue analogue)중 가격이 낮은 철(Fe)을 기반으로 하는 Fe2(CN)6와 NaxFe2(CN)6를 침전법으로 합성하여 리튬이온 이차전지용 양극재료로 사용하고자 하였다. Fe2(CN)6는 34.6 mAh g-1의 낮은 가역용량을 발현하였으나, 소듐이 포함된 NaxFe2(CN)6는 방전을 먼저 진행하는 경우에 107.5 mAh g-1의 가역용량을 나타내고, 충전을 먼저 진행하여 구조 내의 소듐을 제거한 후에 사용하는 경우에는 더 높은 용량인 114.1 mAh g-1의 가역용량을 발현하였으며 사이클 수명도 더욱 향상되었다. 그리고, NaxFe2(CN)6의 합성과정에서 0℃, 상온, 60℃의 각각 다른 반응온도를 적용하여 합성하였다. 합성온도에 상관없이 NaxFe2(CN)6는 유사한 초기 가역용량을 나타내었으나, 낮은 온도에서 합성된 경우일 수록 결정자의 크기가 작게 형성되었고, 향상된 사이클 수명을 나타내었다. 0℃에서 합성된 시료의 경우가 가장 사이클 수명이 우수하여 120번째 사이클에서 86.4 mAh g-1의 용량을 나타내며 초기용량의 76.8%를 유지하였다.

Keywords

References

  1. J.B. Goodenough, and Y. Kim, 'Challenges for Rechargeable Li Batteries', Chem. Mater., 22, 587 (2009). https://doi.org/10.1021/cm901452z
  2. T.-H. Kim, J.-S. Park, S.K. Chang, S. Choi, J.H. Ryu, and H.-K. Song, 'The Current Move of Lithium Ion Batteries Towards the Next Phase', Adv. Energy Mater., 2, 860 (2012). https://doi.org/10.1002/aenm.201200028
  3. Y.M. Kim, S. Choi, and J.W. Choi, 'Prussian Blue Analogues for Rechargeable Batteries', J. Korean Electrochem. Soc., 22, 13 (2019). https://doi.org/10.5229/JKES.2019.22.1.13
  4. B. Wang, Y. Han, X. Wang, N. Bahlawane, H. Pan, M. Yan, and Y. Jiang, 'Prussian Blue Analogs for Rechargeable Batteries', iScience, 3, 110 (2018). https://doi.org/10.1016/j.isci.2018.04.008
  5. K. Hurlbutt, S. Wheeler, I. Capone, and M. Pasta, 'Prussian Blue Analogs as Battery Materials', Joule, 2, 1 (2018). https://doi.org/10.1016/j.joule.2017.10.014
  6. D-M. Kim, Y. Kim, D. Arumugam, S. W. Woo, Y. N. Jo, M.-S. Park, Y.-J. Kim, N.-S. Choi, and K. T. Lee, 'Co-intercalation of $Mg^{2+}$ and $Na^+$ in $Na_{0.69}Fe_2(CN)_6$ as a High-Voltage Cathode for Magnesium Batteries', ACS Appl. Mater. Interfaces, 8, 8554 (2016). https://doi.org/10.1021/acsami.6b01352
  7. L. Shen, Z. Wang, and L. Chen, 'Prussian Blues as a Cathode Material for Lithium Ion Batteries', Chem. Eur. J., 20, 1 (2014). https://doi.org/10.1002/chem.201390210
  8. N. Imanishi, T. Morikawa, J. Kondo, Y. Takeda, O. Yamamoto, N. Kinugasa, 'Lithium intercalation behavior into iron cyanide complex as positive electrode of lithium secondary battery', J. Power Sources, 79, 215 (1999). https://doi.org/10.1016/S0378-7753(99)00061-0
  9. P. Nie, L. Shen, H. Luo, B. Ding, G. Xu, J. Wang, and X. Zhang, 'Prussian blue analogues: a new class of anode materials for lithium ion batteries', J. Mater. Chem. A, 2, 5852 (2014). https://doi.org/10.1039/C4TA00062E
  10. X. Sun, V. Duffort, and L.F. Nazar, 'Prussian Blue Mg-Li Hybrid Batteries', Adv. Sci., 3, 1600044 (2016). https://doi.org/10.1002/advs.201600044
  11. R.Y. Wang, C.D. Wessells, R.A. Huggins, and Y. Cui, 'Highly Reversible Open Framework Nanoscale Electrodes for Divalent Ion Batteries', Nano Lett., 13, 5748 (2013). https://doi.org/10.1021/nl403669a
  12. C.D. Wessells, R.A. Huggins, and Y. Cui, 'Copper hexacyanoferrate battery electrodes with long cycle life and high power', Nat. Commun., 2, 550 (2011). https://doi.org/10.1038/ncomms1563
  13. C. Zhang, Y. Xu, M. Zhou, L. Liang, H. Dong, M. Wu, Y. Yang, and Y. Lei, 'Potassium Prussian Blue Nanoparticles: A Low-Cost Cathode Material for Potassium-Ion Batteries', Adv. Funct. Mater., 27, 1604307 (2017). https://doi.org/10.1002/adfm.201604307
  14. J. Qian, C. Wu, Y. Cao, Z. Ma, Y. Huang, X. Ai, and H. Yang, 'Prussian Blue Cathode Materials for Sodium-Ion Batteries and Other Ion Batteries', Adv. Energy Mater., 8, 1702619 (2018 ). https://doi.org/10.1002/aenm.201702619
  15. X. Yan, Y. Yang, E. Liu, L. Sun, H. Wang, X.-Z. Liao, Y. He, and Z.-F. Ma, 'Improved cycling performance of prussian blue cathode for sodium ion batteries by controlling operation voltage range', Electrochim. Acta, 225, 235 (2017). https://doi.org/10.1016/j.electacta.2016.12.121
  16. Y. You, X Yu, Y. Yin, K.-W. Nam, Y.-G. Guo, 'Sodium iron hexacyanoferrate with high Na content as a Na-rich cathode material for Na-ion batteries', Nano Res., 8, 117 (2015). https://doi.org/10.1007/s12274-014-0588-7
  17. A. Rudola, K. Du, and P. Balaya, 'Monoclinic Sodium Iron Hexacyanoferrate Cathode and Non-Flammable Glyme-Based Electrolyte for Inexpensive Sodium-Ion Batteries', J. Electrochem. Soc., 164, A1098 (2017). https://doi.org/10.1149/2.0701706jes
  18. Y. Lu, L. Wang, J. Cheng and J. B. Goodenough, 'Prussian blue: a new framework of electrode materials for sodium batteries', Chem. Commun., 48, 6544 (2012). https://doi.org/10.1039/c2cc31777j