DOI QR코드

DOI QR Code

FAST ANDROID IMPLIMENTATION OF MONTE CARLO SIMULATION FOR PRICING EQUITY-LINKED SECURITIES

  • JANG, HANBYEOL (DEPARTMENT OF MATHEMATICS, KOREA UNIVERSITY) ;
  • KIM, HYUNDONG (DEPARTMENT OF MATHEMATICS, KOREA UNIVERSITY) ;
  • JO, SUBEOM (DEPARTMENT OF FINANCIAL ENGINEERING, KOREA UNIVERSITY) ;
  • KIM, HANRIM (DEPARTMENT OF FINANCIAL ENGINEERING, KOREA UNIVERSITY) ;
  • LEE, SERI (DEPARTMENT OF CONTROL AND INSTRUMENTATION ENGINEERING, KOREA UNIVERSITY) ;
  • LEE, JUWON (DEPARTMENT OF CONTROL AND INSTRUMENTATION ENGINEERING, KOREA UNIVERSITY) ;
  • KIM, JUNSEOK (DEPARTMENT OF MATHEMATICS, KOREA UNIVERSITY)
  • Received : 2019.12.26
  • Accepted : 2020.03.16
  • Published : 2020.03.25

Abstract

In this article, we implement a recently developed fast Monte Carlo simulation (MCS) for pricing equity-linked securities (ELS), which is most commonly issued autocallable structured financial derivative in South Korea, on the mobile platform. The fast MCS is based on Brownian bridge technique. Although mobile platform devices are easy to carry around, mobile platform devices are slow in computation compared to desktop computers. Therefore, it is essential to use a fast algorithm for pricing ELS on the mobile platform. The computational results demonstrate the practicability of Android application implementation for pricing ELS.

Keywords

References

  1. K Gai, M. Qiu, and X. Sun, A survey on FinTech, J. Netw. Comput. Appl. 103 (2018), 262-273. https://doi.org/10.1016/j.jnca.2017.10.011
  2. D. Jeong, I. S. Wee, and J. Kim, An operator splitting method for pricing the ELS option, J. KSIAM. 14 (2010), 175-187.
  3. D. Jeong, and J. Kim, A comparison study of ADI and operator splitting methods on option pricing models, J. Comput. Appl. Math. 247 (2013), 162-171. https://doi.org/10.1016/j.cam.2013.01.008
  4. D. Jeong, Y. Li, Y. Choi, K. S. Moon, and J. Kim, An adaptive multigrid technique for option pricing under the Black-Scholes model, J. KSIAM. 17 (2013), 295-306.
  5. P. P. Boyle, Options: A Monte Carlo approach, J. financ. econ. 4 (1977), 323-338. https://doi.org/10.1016/0304-405X(77)90005-8
  6. P. Glasserman, Monte Carlo methods in financial engineering, Springer Science & Business Media, 53 (2013).
  7. A. Leitao, L. A. Grzelak, and C. W. Oosterlee, On a one time-step Monte Carlo simulation approach of the SABR model: Application to European options, Appl. Math. Comput. 293 (2017), 461-479. https://doi.org/10.1016/j.amc.2016.08.030
  8. G. Bormetti, G. Callegaro, G. Livieri, A. Pallavicini, A backward Monte Carlo approach to exotic option pricing, Eur. J. Appl. Math. 29 (2018), 146-187. https://doi.org/10.1017/S0956792517000079
  9. H. Jang, S. Kim, J. Han, S. Lee, J. Ban, H. Han, C. Lee, D. Jeong, and J. Kim, Fast Monte Carlo simulation for pricing Equity-Linked Securities, Comput. Econ. (2019). https://doi.org/10.1007/s10614-019-09947-2
  10. D. Jeong, M. Yoo, C. Yoo, J. Kim, A hybrid monte carlo and finite difference method for option pricing, Comput. Econ. 53 (2019), 111-124. https://doi.org/10.1007/s10614-017-9730-4
  11. S. A. Metwally, A. F. Atiya, Using Brownian bridge for fast simulation of jump-diffusion processes and barrier options, J. Deriv. 10 (2002), 43-54.
  12. W. Jian, J. Ban, J. Han, S. Lee, and D. Jeong, Mobile platform for pricing of Equity-Linked Securities, J. KSIAM. 21 (2017), 181-202.
  13. H. Jang, H. Han, H. Park, W. Lee, J. Lyu, J. Park, H. Kim, C. Lee, S. Kim, Y. Choi, and J. Kim, Android application for pricing two-and three-asset Equity-Linked Securities, J. KSIAM. 23 (2019), 237-251.
  14. H. L. Koh, and S. Y. Teh, Learning Black Scholes option pricing the fun way via mobile apps, In Proceedings of 2013 IEEE International Conference on Teaching, Assessment and Learning for Engineering (TALE), (2013), 192-195.