DOI QR코드

DOI QR Code

전자레인지 서셉터 패키징 기술개발 현황

Mini Review: A Current Status of Microwave Susceptor Packaging

  • 이우석 (연세대학교 패키징학과) ;
  • 최정욱 (한국식품산업클러스터진흥원 식품패키징팀) ;
  • 송혁환 (한국식품산업클러스터진흥원 식품패키징팀) ;
  • 고성혁 (연세대학교 패키징학과)
  • Lee, Wooseok (Department of Packaging, Yonsei University) ;
  • Choi, Jungwook (Food Packaging Team, The Food Industry Promotional Agency of Korea) ;
  • Song, Hyuk-Hwan (Food Packaging Team, The Food Industry Promotional Agency of Korea) ;
  • Ko, Seonghyuk (Department of Packaging, Yonsei University)
  • 투고 : 2020.07.24
  • 심사 : 2020.08.13
  • 발행 : 2020.12.31

초록

As HMR (home meal replacement) food market grows rapidly, a new packaging with more HMR specialized functions is highly required to promote consumers' convenience. A susceptor is defined as a material generating heat by absorbing electromagnetic energy such typically as radiofrequency or microwave radiation. In microwave cooking, susceptors are made of conductive metal thin film deposited on paper or plastic sheet and have generally been used to help crispen or brown foods by converting microwave energy into heat. This mini review article deals with current status of microwave susceptor packaging including commercial products, technical theory, types of susceptor and a test method for heating performance.

키워드

참고문헌

  1. 농림축산식품부 2019. 가공식품 세분시장 현황 (간편식시장). 한국농촌경제연구원 연구보고서: 1-159.
  2. 이용선 2020 식품산업 전망.
  3. 김태경, 최희돈, 김영붕, 전기홍 and 최윤상 2017. 가정식 대체식품 (Home Meal Replacement) 의 현황 및 기술동향. 식품산업과 영양 22: 1-7.
  4. 식품의약품안전처 2019. 2018 식품 및 식품첨가물 생산실적.
  5. Mishra, R. R. and Sharma, A. K. 2016. Microwave-material interaction phenomena: Heating mechanisms, challenges and opportunities in material processing. Composites Part A: Applied Science and Manufacturing 81: 78-97. https://doi.org/10.1016/j.compositesa.2015.10.035
  6. Company, M. 1999. Microwave heatable material. KR0156412.
  7. Perry, M. and Lentz, R. 2009. Susceptors in microwave packaging. Development of packaging and products for use in microwave ovens. Elsevierpp. 207-236.
  8. Mehdizadeh, M. 2015. Chapter 5 - Microwave multimode cavities for material heating. In: Mehdizadeh, M. (Ed.), Microwave/RF Applicators and Probes (Second Edition). William Andrew Publishing, Boston, pp. 153-183.
  9. Datta, A. K. 2001.Handbook of microwave technology for food application. CRC Press2001.
  10. Inc, S. M. C. 2006. 요리 및 굽기의 응용을 위한 마이크로파서셉터. KR20060104940A.
  11. 최광용. 2014. 전자레인지용 발열 식품포장재 및 그 제조방법. KR101395010B1.
  12. Parks, C. J. and Wolfe, K. J. 1990. Press applied susceptor for controlled microwave heating.
  13. Regier, M. 2014. Chapter 20 - Microwavable Food Packaging. In: Han, J.H. (Ed.), Innovations in Food Packaging (Second Edition). Academic Press, San Diego, pp. 495-514.
  14. 심아영. 2006. Toasted Bun Package Using Susceptor Packaging. KR200431742.
  15. 주식회사신세계푸드. 2018. 발열패드 및 이의 제조방법. 1020190079533.
  16. Cole, L. R., Bohrer, T. H., Middleton, S. W., Robison, R. G., Lafferty, T. P., O'hagan, B. R. and Wnek, P. H. 2013. Microwave cooking packages and methods of making thereof. US Patent 8,440,275.
  17. Antoine Bontemps, L. F. 2013. Packaging comprising a heat shrinking film. US Patent 8,425,958.
  18. Dawes, M. E. 2010. Multi-layer polymeric film for packaging ovenable meals. US Patent 7,824,749.
  19. Travis Dillion URIBE, J. M. P. 2018. Microwavable packages and food products. PCT/US2017/063359.
  20. Young, R. C. and Kools, J. 2006. Microwave oven cooking process. US Patent 7,038,182.
  21. Sloat, J. T. and Resurreccion, F. P. 2019. Package for combined steam and microwave heating of food. US Patent 10,301,100.
  22. ASTM International. ASTM F874-98, 2019, Standard Test Method for Temperature Measurement and Profiling for Microwave Susceptors
  23. Raghavan, G. V., Orsat, V. and Meda, V. 2005. Microwave processing of foods. Stewart Postharvest Review 3: 1-7.
  24. Wang, X., Wang, X., Muhoza, B., Feng, T., Xia, S. and Zhang, X. 2020. Microwave combined with conduction heating effects on the tenderness, water distribution, and microstructure of pork belly. Innovative Food Science & Emerging Technologies: 102344.
  25. Chen, F., Warning, A. D., Datta, A. K. and Chen, X. 2017. Susceptors in microwave cavity heating: Modeling and experimentation with a frozen pie. Journal of Food Engineering 195: 191-205. https://doi.org/10.1016/j.jfoodeng.2016.09.018
  26. Pitchai, K., Birla, S., Raj, J. D., Subbiah, J. and Jones, D. D. 2011.Modeling of Susceptor Assisted Microwave Heating in Domestic Ovens.
  27. Swain, M. V. L., Russell, S. L., Clarke, R. N. and Swain, M. J. 2004. The development of food simulants for microwave oven testing. International journal of food science & technology 39: 623-630. https://doi.org/10.1111/j.1365-2621.2004.00819.x
  28. 윤찬석, 이화신, 조아름, 문상권 and 이근택 2016. 전자레인지의 가열조리 시 포장재의 열변형 원인 규명을 위한 온도 측정 방법 비교. 한국식품저장유통학회지 23: 422-431. https://doi.org/10.11002/KJFP.2016.23.3.422
  29. Knoerzer, K., Regier, M. and Schubert, H. 2017. Measuring temperature distributions during microwave processing. The microwave processing of foods. Elsevierpp. 327-349.
  30. Cuccurullo, G., Berardi, P., Carfagna, R. and Pierro, V. 2002. IR temperature measurements in microwave heating. Infrared physics & technology 43: 145-150. https://doi.org/10.1016/S1350-4495(02)00133-0