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EXTENSION OF BLOCK MATRIX REPRESENTATION OF

THE GEOMETRIC MEAN

Hana Choi, Hayoung Choi, Sejong Kim, and Hosoo Lee

Abstract. To extend the well-known extremal characterization of the

geometric mean of two n×n positive definite matrices A and B, we solve
the following problem:

max

{
X : X = X∗,

A V X

V B W
X W C

 ≥ 0

}
.

We find an explicit expression of the maximum value with respect to the

matrix geometric mean of Schur complements.

1. Introduction

The geometric mean of two n×n positive definite matrices A and B is given
by an explicit formula [1, 16]:

A#B := A
1
2 (A−

1
2BA−

1
2 )

1
2A

1
2 .

It has an extremal characterization as follows:

(1) A#B = max

{
X : X = X∗,

(
A X
X B

)
≥ 0

}
.

Here ≤ denotes the Loewner ordering between Hermitian matrices.
A multivariable extension of this characterization arises naturally accord-

ing to recent developments of multivariable geometric means on the Cartan-
Hadamard-Riemannian manifold of positive definite matrices [2,5,6]. However,
the extremal characterization of the geometric mean of two positive definite ma-
trices does not seem to be easily generalized to multivariable geometric means.
An extremal characterization of geometric mean of three positive definite ma-
trices are still open in the context of matrix analysis.
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A partial block matrix is an m ×m array A = [Aij ]
m
i,j=1 of matrices Aij of

fixed size, some of these matrices being specified, and others being unspecified
(or missing), i.e., free variables over the matrices. An example is

A11 A12 ? ?
A21 A22 A23 ?

? A32 A33 A34

? ? A43 A44

 ,

where ? denote the unspecified matrices.
We denote the unspecified entries of a partial matrix typically by X,Y, Z,

and so on. A completion of the partial matrix is a specification of its unspecified
entries, resulting in a conventional matrix. In this paper we focus on positive
(semi)definite completions for partial block matrices. Gohberg et al. consid-
ered the positive definite completions of banded block matrix [8] and further
developed in [9]. They also developed the band method for non-band block
matrix completion [10]. Moreover, a completion with maximum entropy was
studied in [11]. For information about positive semidefinite completions with
scalar entries, see [12,15].

The key observation is that the block matrix in (1)

H =

(
A X
X B

)
is a 2×2 partial block matrix with only one missing block X. It is easy to check
that it has infinitely many positive semidefinite completions. There are various
well-known positive semidefinite completions. One particular completion can
be a matrix which has the maximum determinant of H, called a maximum
entropy property. The only X = 0 has the maximum determinant. The geo-
metric mean can be considered as one of particular completions, which is the
maximum among all completions with respect to the Loewner order.

Now we consider the following 3 × 3 block matrix with only one missing
block X,

H(X) =

 A V X
V ∗ B W
X W ∗ C

 .

Also, it has infinitely manly positive semidefinite completions. There are var-
ious well-known positive semidefinite completions. For example, X = V B−1W
is the unique choice for (1,3) entry of H(X) for which the completion F satisfies
(F−1)13 = 0.

For another example, if G1 : rangeB → rangeA and G2 : rangeC → rangeB
are contractions such that V = A

1
2G1B

1
2 and W = B

1
2G2C

1
2 , where rangeA

means the range of linear operator A, then A
1
2G1G2C

1
2 is a positive semidefi-

nite completion, which is the central completion. For more information about
positive matrix completions, see [3] and references therein.
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However, to the best of our knowledge, there are no existing results for
the maximum positive definite completion with respect to the Loewner order.
This observation motivated us to investigate the maximum matrix X with
respect to the Loewner order for which the block matrix H(X) is positive
semidefinite. We show that such X can be written as the geometric mean and
Schur complements.

In this paper, we will mainly consider positive semidefinite completions for
the 3×3 block matrix based on the Loewner order. In Section 2, we will review
some basic facts for 2× 2 block matrices. Also, a known result for 3× 3 partial
block matrix completions is shown. In Section 3, we show that the maximum
and the minimum of completions for a certain 3× 3 partial block matrix with
respect to the Loewner order can be expressed as the matrix geometric mean
of Schur complements. Moreover, completions for various special cases and
examples are considered.

2. Preliminaries

In this section, we review well-known facts for positive definite block ma-
trices. For more details on positive matrix completions, see the book [3] and
references therein.

A partial block matrix A = [Aij ]
n
i,j=1 is said to be partially positive semi-

definite if the following conditions hold:

(i) All diagonal entries Aii are specified and positive definite matrices;
(ii) Aij is specified if and only if Aji is specified and A∗ij = Aji;
(iii) All fully specified principal minors of A are positive semidefinite.

Note that every principal submatrix of a positive semidefinite matrix is positive
semidefinite. Thus, being partially positive semidefinite is a necessary condition
for the existence of positive completion.

Let Mm×n(F) be the ring of all m×n matrices with entries in the field F = R
or F = C. We simply denote Mm×n := Mm×n(F) for F = C and also denote
Mn := Mn×n. Let Hn be the real vector space of all n× n Hermitian matrices
and let Pn ⊂ Hn be the open convex cone of all positive definite matrices. For
any A,B ∈ Hn we write A ≤ B if B−A is positive semi-definite, and A < B if
B − A is positive definite. This is indeed a partial order on Hn, known as the
Loewner order.

Here, we recall some known results for the partial block matrix to have a
positive semidefinite completion.

Theorem 2.1 ([13, Theorem 7.7.9]). Let A ∈ Mm, B ∈ Mn, C ∈ Mm×n and
let

T =

(
A C
C∗ B

)
.

Then T ≥ 0 if and only if

(i) A ≥ 0,
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(ii) B ≥ 0, and
(iii) C = A1/2EB1/2 for some contraction E (that is, ||E|| ≤ 1 for the

operator norm).

In fact, this statement holds for bounded operators on Hilbert spaces with infi-
nite dimension [7].

Definition. For the 2× 2 block matrix

M =

(
A11 A12

A21 A22

)
,

the Schur complement of A22, denoted by M/A22, is

A11 −A12A
−1
22 A21,

provided that A22 is nonsingular. Similarly, the Schur complement of A11,
denoted by M/A11, is

A22 −A21A
−1
11 A12,

provided that A11 is nonsingular.

Theorem 2.2 (Schur complement condition for positive semidefiniteness [4,
13]). Let M be a 2× 2 block matrix partitioned as

M =

(
A C
C∗ B

)
.

If A is invertible, then the following are true:

(i) M > 0 if and only if A > 0 and M/A > 0.
(ii) If A > 0, then M ≥ 0 if and only if M/A ≥ 0.

If B is invertible, then the following are true:

(iii) M > 0 if and only if B > 0 and M/B > 0.
(iv) If B > 0, then M ≥ 0 if and only if M/B ≥ 0.

The following are some known results for the special types of 3 × 3 partial
block matrix to have the positive definite completion.

Theorem 2.3 ([15, Proposition 1]). Consider the following partial matrix with
the only one missing entry:

(2) H(x) =

a v> x
v C w
x w> b

 ,

where a, b ∈ R, v, w ∈ Rn, C ∈Mn(R), and x ∈ R is the missing entry. If H(x)
is partial positive definite, H(x) has a positive definite completion. Indeed, the
set of all such completions is given by the inequality

|x− v>C−1w|2 < detA detB

(detC)2
,
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where

A =

(
a v>

v C

)
and B =

(
C w
w> b

)
.

Two endpoints of this interval give singular positive semidefinite completions of
H(x). When x = v>C−1w, the positive definite completion has the maximum
determinant

det (A) det (B)

det (C)
.

3. Main results

In this section we show the sufficient and necessary condition for positive
semidefinite completion of special partial block matrices with respect to Schur
complement. Moreover, we give a necessary condition for such a positive semi-
definite completion with respect to the geometric mean.

By Theorem 2.3 it is easy to see the following.

Corollary 3.1. Consider 3× 3 partial positive semidefinite matrix as follows:

(3) H(x) =

a v x
v b w
x w c

 ,

where a, b, c, v, w are given, and a, b, c > 0 and x is the missing entry. Then
the following are satisfied:

(i) The set of positive semidefinite completions is given by the inequality∣∣x− vb−1w∣∣ ≤ √(ab− v2)(bc− w2)

b
;

(ii) The maximum value is

x =
vw +

√
(ab− v2)(bc− w2)

b
,

and such x gives the determinant 0;
(iii) When x = vb−1w, the positive definite completion has the maximum

determinant.

Note that if the matrix H(x) given in (3) is a partial positive semidefinite

matrix, then it follows that v2 ≤ ab and w2 ≤ bc. If v =
√
ab, then by (i) it

follows that
x =
√
ab−1w if and only if H(x) ≥ 0.

If w =
√
bc, then by (i) it follows that

x = v
√
b−1c if and only if H(x) ≥ 0.

If both v =
√
ab and w =

√
bc, then by (i) we have

x =
√
ac if and only if H(x) ≥ 0.

Now we generalize these results for 3× 3 block matrix.
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Proposition 3.2. Consider the following partial block matrix with the only
one missing block matrix:

H(X) =

 A V X
V ∗ B W
X∗ W ∗ C

 ,

where A ∈ Pk, B ∈ Pm and C ∈ Pn are given, and X is a missing block.
Assume that

E =

(
A V
V ∗ B

)
> 0.

Then H(X) ≥ 0 if and only if

G/B ≥ (F/B)∗(E/B)−1(F/B),

where

F =

(
X V
W B

)
, G =

(
B W
W ∗ C

)
.

Proof. Since H(X) is partial positive semidefinite, the 2 × 2 block matrices
E and G are positive semidefinite. Since E > 0, by the Schur complement
inequality it holds that H(X) ≥ 0 if and only if

(4) C −
(
X∗ W ∗

)
E−1

(
X
W

)
≥ 0.

Note that (
A V
V ∗ B

)
=

(
I V B−1

0 I

)(
S 0
0 B

)(
I 0

B−1V ∗ I

)
,

where S = A−V B−1V ∗ is the Schur’s complement of the block B of the matrix
E. Note that S > 0 by assumption. Then we have(

X∗ W ∗
)
E−1

(
X
W

)
=
(
X∗ W ∗

)( I 0
−B−1V ∗ I

)(
S−1 0

0 B−1

)(
I −V B−1
0 I

)(
X
W

)
=
(
X∗ −W ∗B−1V ∗ W

)(S−1 0
0 B−1

)(
X − V B−1W

W

)
=
(
Y ∗ W ∗

)(S−1 0
0 B−1

)(
Y
W

)
= Y ∗S−1Y +W ∗B−1W,

where Y = X − V B−1W . Then the inequality (4) can be expressed as

C −W ∗B−1W ≥ Y ∗S−1Y,
equivalently,

C −W ∗B−1W ≥ (X∗ −W ∗B−1V ∗)(A− V B−1V ∗)−1(X − V B−1W ). �
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Proposition 3.3. Let H(X) be the partial block matrix appeared as in Propo-
sition 3.2, where A ∈ Pk, B ∈ Pm and C ∈ Pn are given, and X is a missing
block. Assume that

G =

(
B W
W ∗ C

)
> 0.

Then H(X) ≥ 0 if and only if

E/B ≥ (F/B)(G/B)−1(F/B)∗,

where E and F are defined in Proposition 3.2.

Proof. By applying the Schur’s complement inequality to H(X)/G, we have
that H(X) ≥ 0 if and only if

A−
(
V X

)
G−1

(
V ∗

X∗

)
≥ 0.

By the similar argument of Proposition 3.2, we obtain the required inequality.
�

Let H ∈ Mm(Mn). For index sets α, β ⊂ {1, . . . ,m}, we denote the
(sub)matrix that lies in the rows of H indexed by α and the columns indexed
by β as H(α, β). For example,A11 A12 A13

A21 A22 A23

A31 A32 A33

 ({1, 3}, {2, 3}) =

(
A12 A13

A32 A33

)
.

If α = β, the submatrix H(α, α) is abbreviated to H(α).

Corollary 3.4. Let H = [Hij ] ∈ Mm(Mn) (m ≥ 3) be a partially positive
semidefinite block matrix whose diagonal block entry is Ai and (k, l)-block and
(l, k)-block are missing blocks for some given k < l. Then the following are
true:

(i) if H({l}c) > 0, then

H ≥ 0⇐⇒ G/B ≥ (F/B)∗(E/B)−1(F/B);

(ii) if H({k}c) > 0, then

H ≥ 0⇐⇒ E/B ≥ (F/B)(G/B)−1(F/B)∗;

where

E =

(
Ak V
V ∗ B

)
, F =

(
X V
W B

)
, G =

(
B W
W ∗ Al

)
and

V = H({k}, {k, l}c), W = H({k, l}c, {l}), B = H({k, l}c).
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Proof. Consider a permutation matrix P = JT
k ⊕ In(l−k) ⊕ Jm−l where

Jk =


0 0 0 · · · 0 I
I 0 0 · · · 0 0
0 I 0 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · I 0

 ∈Mk(Mn).

Then

PTHP =

Ak V X
V ∗ B W
X∗ W ∗ Al

 .

By Propositions 3.2 and 3.3, we obtain the required inequalities. �

It is well-known in [14, Theorem 3.4] and [4, Theorem 4.1.3] that the geo-
metric mean A#B of two positive definite matrices A and B has an extremal
property such that

A#B = max

{
X ∈ Hn :

(
A X
X B

)
≥ 0

}
.

However, Corollary 3.5 in [14] is not correct. Alternatively, we give a neces-
sary condition for a missing Hermitian matrix X such that ( A X

X B ) is positive
semidefinite.

Theorem 3.5. Let A,B ∈ Pn and X ∈ Hn. If H(X) = ( A X
X B ) ≥ 0, then

−(A#B) ≤ X ≤ A#B.

Proof. Note that by Theorem 2.2, it holds that

H(X) ≥ 0 ⇐⇒ XA−1X ≤ B.
The assertion that XA−1X ≤ B implies X ≤ A#B follows from Theorem

3.4 in [14]. Since XB−1X = (−X)B−1(−X), by Theorem 2.2(iv),(
A X
X B

)
≥ 0 is equivalent to

(
A −X
−X B

)
≥ 0.

So we have −X ≤ A#B. Therefore, −A#B ≤ X ≤ A#B. �

Theorem 3.6. Let H(X) be the partial block matrix appeared as in Proposition
3.2, where A ∈ Pn, B ∈ Pm and C ∈ Pn are given, and X ∈ Hn is a missing
block. Assume that

E =

(
A V
V ∗ B

)
> 0,

and V B−1W = W ∗B−1V ∗. If H(X) ≥ 0, then

V B−1W − (E/B)#(G/B) ≤ X ≤ V B−1W + (E/B)#(G/B).

Furthermore, V B−1W + (E/B)#(G/B) (resp. V B−1W − (E/B)#(G/B)) is
the maximum (resp. the minimum) with respect to the Loewner order for all
X ∈ H for which the block matrix H(X) is positive semidefinite.
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Proof. By Proposition 3.2, it follows that

G/B ≥ (F/B)(E/B)−1(F/B).

By Theorem 3.5 it holds that

−(E/B)#(G/B) ≤ F/B ≤ (E/B)#(G/B).

It suffices to show that H(X) ≥ 0 for X = V B−1W + (E/B)#(G/B) or
V B−1W − (E/B)#(G/B). Since F/B = (E/B)#(G/B) for X = V B−1W +
(E/B)#(G/B), it follows that

(F/B)(E/B)−1(F/B) = ((E/B)#(G/B))(E/B)−1((E/B)#(G/B)) = G/B.

By Proposition 3.2, H(X) ≥ 0 for X = V B−1W + (E/B)#(G/B). In the sim-
ilar way, it is easy to show that H(X) ≥ 0 for X = V B−1W − (E/B)#(G/B).

�

Remark 3.7. Even though V = A#B and W = B#C, it does not hold that
V B−1W = W ∗B−1V ∗, in general. For instance, consider

A =

(
2 5
5 13

)
, B =

(
13 11
11 10

)
, C =

(
5 4
4 5

)
.

Then it is easy to check that

V B−1W = (A#B)B−1(B#C) ≈
(

1.1157 2.6679
1.3097 5.8209

)
is not Hermitian.

On the other hand, there are several cases satisfying the condition V B−1W =
W ∗B−1V ∗. For instance, V = 0 or W = 0, or V = αI and W = βI for some
α, β ∈ R. We consider these special cases in the following. For given B ∈ Pn

it is questionable what the sufficient and necessary condition of V and W for
V B−1W = W ∗B−1V ∗ is.

Corollary 3.8. Let A,B,C ∈ Pn be given. Consider the following partial block
matrix with the only one missing block matrix:

H(X) =

 A αV X
αV B βV
X βV C

 ,

where V ∈ Hn such that

E =

(
A αV
αV B

)
≥ 0, G =

(
B βV
βV C

)
≥ 0.

If H(X) ≥ 0, then

αβV B−1V − (E/B)#(G/B) ≤ X ≤ αβV B−1V + (E/B)#(G/B),

equivalently,

αβK − (A− α2K)#(C − β2K) ≤ X ≤ αβK + (A− α2K)#(C − β2K),

where K = V B−1V . Especially, the following are true.
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(1) For the case when V = I, if H(X) ≥ 0, then

αβB−1 − (A− α2B−1)#(C − β2B−1)

≤ X ≤ αβB−1 + (A− α2B−1)#(C − β2B−1).

(2) For the case when α = 0, if H(X) ≥ 0, then

−(A#(G/B)) ≤ X ≤ A#(G/B).

(3) For the case when β = 0, if H(X) ≥ 0, then

−((E/B)#C) ≤ X ≤ (E/B)#C.

(4) For the case when α = β = 0, if H(X) ≥ 0, then

−(A#C) ≤ X ≤ A#C.

Definition. A family F ⊆Mn of matrices is a nonempty finite or infinite set of
matrices. A commuting family is the family of matrices in which every pair of
matrices commutes. A family F is called a Γ-commuting family, or the family
F Γ-commutes, if there exists invertible M such that MFM∗ := {MXM∗|X ∈
F} is a commuting family.

Lemma 3.9. Let B ∈ GLn∩Hn and let F = {A,B,C} ⊆ Hn be Γ-commuting
family, where GLn denotes the general linear group of all n × n invertible
matrices. Then

AB−1C = CB−1A.

Proof. Since F is a Γ-commuting family, there exists invertible M such that
MFM∗ is a commuting family. Then it follows that

MAB−1CM∗ = (MAM∗)(MBM∗)−1(MCM∗)

= (MCM∗)(MBM∗)−1(MAM∗)

= MCB−1AM∗.

The second equality follows from the fact that AB = BA is equivalent to
AB−1 = B−1A. Since M is invertible, it holds that AB−1C = CB−1A. �

Corollary 3.10. Let H(X) be the partial block matrix appeared as in Propo-
sition 3.2, where A,B,C ∈ Pn and V,W ∈ Hn are given, and X ∈ Hn is a
missing block. Assume that

E =

(
A V
V B

)
> 0,

and {V,B,W} is a Γ-commuting family. If H(X) ≥ 0, then

V B−1W − (E/B)#(G/B) ≤ X ≤ V B−1W + (E/B)#(G/B).

Proof. By Theorem 3.6 and Lemma 3.9, it is straightforward. �

The following theorems are the extension of results mentioned after Corollary
3.1.
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Theorem 3.11. For each V ∈ Hn, let HV (X) be the partial block matrix

HV (X) =

A V X
V B W
X W C

 ,

where A,B,C ∈ Pn and W ∈ Hn, and X ∈ Hn is a missing block. If
{A#B,B,W} is a Γ-commuting family and HA#B(X) is positive semidefinite,

then X = (AB−1)1/2W .

Proof. Since {A#B,B,W} is a Γ-commuting family, there exists an invertible
matrix M such that {M(A#B)M∗,MBM∗,MWM∗} is a commuting family.
Consider the sequence

Vk := A#B − 1

k
(M∗M)−1 and Ek =

(
A Vk
Vk B

)
.

Then Vk ↗ A#B as k → ∞ and {Vk, B,W, (M∗M)−1} is a Γ-commuting
family. Note that

Ek/B = A−
(
A#B − 1

k
(M∗M)−1

)
B−1

(
A#B − 1

k
(M∗M)−1

)
= A− (A#B)B−1(A#B)

+
1

k

[
(M∗M)−1B−1(A#B) + (A#B)B−1(M∗M)−1

1

k

−1

k
(M∗M)−1B−1(M∗M)−1

]
=

1

k

[
2(M∗M)−1B−1(A#B)− 1

k
(M∗M)−1B−1(M∗M)−1

]
.

The last equality follows from the facts that A = (A#B)B−1(A#B) and
{B,A#B, (M∗M)−1} is a Γ-commuting family.

For k > 1
2λmax((A#B)(M∗M)−1),

2(M∗M)−1B−1(A#B)− 1

k
(M∗M)−1B−1(M∗M)−1 > 0.

So Ek/B > 0, and hence Ek > 0 by Theorem 2.2(iii).
Since {Vk, B,W} is a Γ-commuting family and Ek > 0, we obtain by Corol-

lary 3.10 that if HVk
(X) ≥ 0, then

VkB
−1W − (Ek/B)#(G/B) ≤ X ≤ VkB−1W + (Ek/B)#(G/B).

Taking limit as k →∞, we have limk→∞HVk
(X) = HA#B(X), limk→∞Ek/B

= 0, and limk→∞(Ek/B)#(G/B) = 0. Hence, we obtain that if HA#B(X) ≥ 0,

then X = (A#B)B−1W = (AB−1)1/2W . �

By the similar argument of Theorem 3.11, we obtain the following.
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Theorem 3.12. For each W ∈ Hn, let ĤW (X) be the partial block matrix

ĤW (X) =

A V X
V B W
X W C

 ,

where A,B,C ∈ Pn and V ∈ Hn, and X ∈ Hn is a missing block. If {B#C,B,

V } is a Γ-commuting family and ĤB#C(X) is positive semidefinite, then X =

V (B−1C)1/2.
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