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WEIGHTED HARDY INEQUALITIES WITH

SHARP CONSTANTS

Aigerim Kalybay and Ryskul Oinarov

Abstract. In the paper, we establish the validity of the weighted discrete

and integral Hardy inequalities with periodic weights and find the best
possible constants in these inequalities. In addition, by applying the

established discrete Hardy inequality to a certain second–order difference
equation, we discuss some oscillation and nonoscillation results.

1. Introduction

Let us consider the following classical Hardy inequalities [6, Theorems 326
and 327]:

(1)

∞∑
n=1

(
1

n

n∑
k=1

fk

)p
<

(
p

p− 1

)p ∞∑
k=1

fpk , f = {fk}, f ≥ 0, f 6≡ 0,

(2)

∫ ∞
0

(
1

x

∫ x

0

f(t)dt

)p
dx <

(
p

p− 1

)p ∫ ∞
0

fp(t)dt, f ≥ 0, f 6≡ 0,

where 1 < p < ∞ and
(

p
p−1

)p
is the best or sharp constant in (1) and (2).

Here and in the sequel, f = {fk}, f ≥ 0, means fk ≥ 0, ∀k ≥ 1.

Proposition 1.1. Let 1 < p < ∞. Then for any fixed integer m ≥ 0 the
inequality

(3)

∞∑
n=1

(
1

n+m

n∑
k=1

fk

)p
<

(
p

p− 1

)p ∞∑
k=1

fpk , f = {fk}, f ≥ 0, f 6≡ 0,

holds with the best constant
(

p
p−1

)p
.
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The statement of Proposition 1.1 seems to be well–known, however, the
authors find it difficult to provide relevant references. Let us note that in view

of (1) the fulfillment of the inequality (3) is obvious, and the constant
(

p
p−1

)p
is also the best possible. Moreover, (3) has a proof similar to the proof of (1)
(see [6, Theorem 326]).

Intensive studies of the weighted Hardy inequalities

(4)

( ∞∑
n=1

(
un
n

n∑
k=1

fk

)q) 1
q

≤ C

( ∞∑
k=1

(vkfk)p

) 1
p

, f = {fk}, f ≥ 0,

(5)

(∫ ∞
0

(
u(x)

x

∫ x

0

f(t)dt

)q
dx

) 1
q

≤ C
(∫ ∞

0

(v(t)f(t))pdt

) 1
p

, f ≥ 0,

have been conducted during the past half century. Here 0 < q ≤ ∞ and
1 ≤ p ≤ ∞; {un} and {vn} are sequences of real numbers such that un ≥ 0 and
vn ≥ 0, ∀n ≥ 1; u(·) and v(·) are functions measurable on semiaxis such that
u(t) ≥ 0 and v(t) ≥ 0, ∀t ≥ 0. The history of the development of the Hardy
inequalities (4), (5) and relative results are collected in monographs [10,11,15].
The most known step in this development is a characterization of the inequality
(5) for the case 1 ≤ p = q ≤ ∞ given in the work by B. Muckenhoupt [13].
This characterization is frequently called “Muckenhoupt condition” since it
was B. Muckenhoupt who presented a simple and direct proof for this range of
parameters.

However, the best constants in (4) and (5) have not been found yet. In the
book [10, p. 26], the best possible constants are presented only for particular
cases of the inequality (5). For example, the known weighted Hardy inequality
[6]

(6)

∫ ∞
0

(
xα

x

∫ x

0

f(t)dt

)p
dx <

(
p

p−αp−1

)p ∫ ∞
0

(tαf(t))pdt, f ≥ 0, f 6≡ 0,

has the best constant
(

p
p−αp−1

)p
, where α < 1− 1

p .

Some attempts to establish a discrete analogue of the inequality (6) are
known. For example, in the works [2,3] (see also [4,5]), the following inequalities

∞∑
n=1

[
1

n1−α

n∑
k=0

[
kα−1 − (k − 1)α−1

]
ak

]p
≤
[

1− α
p− αp− 1

]p ∞∑
n=1

apn, an ≥ 0,

and

∞∑
n=1

 1
n∑
i=1

i−α

n∑
k=1

k−αak


p

≤
[

1− α
p− αp− 1

]p ∞∑
n=1

apn, an ≥ 0,
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have been established with the best constant
[

1−α
p−αp−1

]p
for α > 0, p > 1, and

αp > 1.
Moreover, in the article [12], there are some other analogues of the inequality

(6) in the forms

∞∑
n=−∞

[
1

qnλ

n∑
k=0

qkλak

]p
≤ 1

(1− qλ)
p

∞∑
n=−∞

apn, an ≥ 0,

and
∞∑
n=1

[
1

qnλ

n∑
k=0

qkλak

]p
≤ 1

(1− qλ)
p

∞∑
n=1

apn, an ≥ 0,

where 0 < q < 1, p ≥ 1, α < 1− 1/p and λ := 1− 1/p− α.
For p ≥ 1 and α < 1− 1/p an analogue of the inequality (6) in h-calculus is

recently established in the article [16]. This inequality leads to another more
precise discrete analogue of the inequality (6):

∞∑
n=0

(
n(α−1)

n∑
k=0

ak
k(α)

)p
≤
(

p

p− αp− 1

)p ∞∑
n=0

apk, ak ≥ 0,

where

t(α) =
Γ (t+ 1)

Γ (t+ 1− α)
, t ∈ R.

Inequalities with the best constants play an important role in many problems
of Analysis. The main aim of this article is to establish the validity of the
weighted discrete and integral Hardy inequalities (4) and (5) with periodic
weights and find their best constants.

The article is organized as follows: in Section 2, we present and prove our
main result concerning the discrete Hardy inequality. Applications of the ob-
tained inequality to the oscillatory properties of a certain difference equation
are formulated and proved in Section 3. Finally, in Section 4 we state and
prove the integral Hardy inequality.

2. Weighted discrete Hardy inequality with the best constant

Let w ≥ 2 be an integer number. We denote by Pw the class of sequences of
nonnegative real numbers u = {uk}∞k=1 such that

(7)

w∑
i=1

ui =

kw∑
i=(k−1)w+1

ui, ∀k ≥ 1.

It is obvious that the nonnegative w-periodic sequence u such that uk ≥ 0,
uk = uk+w, ∀k ≥ 1, belongs to Pw. Indeed, for i = j + (k − 1)w we have

kw∑
i=(k−1)w+1

ui =

w∑
j=1

uj+(k−1)w =

w∑
j=1

uj .
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Let us also note that the Pw class is wider than the class of just w-periodic
sequences.

Define

Tp =

(
1

w

w∑
i=1

upi

) 1

w

w∑
j=1

v−p
′

j

p−1

.

Let v = {vk}∞k=1 be a nontrivial nonnegative sequence of real numbers.
Denote by lp,v, 1 ≤ p <∞, the space of sequences of real numbers f = {fk}∞k=1,
for which

∞∑
k=1

|vkfk|p <∞.

Theorem 2.1. Let 1 < p <∞ and uk ≥ 0, vk > 0, ∀k ≥ 1. Let the sequences

up = {upk}∞k=1 and v−p
′

= {v−p
′

k }∞k=1 belong to the class Pw. Then for any
integer number m ≥ 1 the inequality

(8)

∞∑
n=1

(
un

n+mw

n∑
i=1

fi

)p
≤ C

∞∑
j=1

(vjfj)
p, f = {fi}∞i=1 ∈ lp,v, f ≥ 0,

holds with the best constant

(9) C =

(
p

p− 1

)p
Tp.

Moreover, in (8) the equality is reached only for the trivial sequence, i.e., when
fi = 0, ∀i ≥ 1.

If the inequality (8) holds for m = 0 with the best constant C > 0, then

(10) C ≥
(

p

p− 1

)p
Tp.

Proof. Let m ≥ 1. Assume wk = (k−1)w+1, k ≥ 1. Let f = {fi}∞i=1, f ∈ lp,v,
f ≥ 0, f 6≡ 0. Using the relation (7), we have

(11)

∞∑
n=1

 un
n+mw

n∑
j=1

fj

p

=

∞∑
k=1

kw∑
n=wk

 un
n+mw

n∑
j=1

fj

p

≤
∞∑
k=1

 1

wk +mw

kw∑
j=1

fj

p
kw∑

n=wk

upn

≤ 1

wp

w∑
n=1

upn

∞∑
k=1

(
1

k +m− 1

k∑
i=1

Fi

)p
,

where Fi =
iw∑
j=wi

fj , i ≥ 1.



WEIGHTED HARDY INEQUALITIES WITH SHARP CONSTANTS 607

From f ≥ 0, f 6≡ 0, it follows that F = {Fi}∞i=1 ≥ 0, F 6≡ 0. Therefore, in
view of (3), we get

(12)

∞∑
k=1

(
1

k +m− 1

k∑
i=1

Fi

)p
<

(
p

p− 1

)p ∞∑
i=1

F pi .

On the basis of Hölder’s inequality, we have

F pi =

 iw∑
j=wi

fj

p

≤

 iw∑
j=wi

v−p
′

j

p−1
iw∑
j=wi

(vjfj)
p

=

 w∑
j=1

v−p
′

j

p−1
iw∑
j=wi

(vjfj)
p
.

Then

(13)

∞∑
i=1

F pi =

 w∑
j=1

v−p
′

j

p−1
∞∑
i=1

iw∑
j=wi

(vjfj)
p

=

 w∑
j=1

v−p
′

j

p−1
∞∑
i=1

(vifi)
p
.

From (11), (12) and (13) it follows that

∞∑
n=1

 un
n+mw

n∑
j=1

fj

p

<

(
p

p− 1

)p
Tp

∞∑
i=1

(vifi)
p
,

i.e., the inequality (8) holds with the estimate

(14) C ≤
(

p

p− 1

)p
Tp

for the best constant C in (8).
Let now the inequality (8) hold for any m ≥ 0. Let g = {gi}∞i=1 be a

nonnegative sequence such that gi = v−p
′

i ϕk for wk ≤ i ≤ kw, k ≥ 1, where

ϕk ≥ 0 and 0 <
∞∑
k=1

ϕpk <∞. Then

(15)

∞∑
i=1

(vigi)
p

=

∞∑
k=1

kw∑
i=wk

(vigi)
p

=

∞∑
k=1

ϕpk

kw∑
i=wk

v−p
′

i =

w∑
i=1

v−p
′

i

∞∑
k=1

ϕpk <∞.

Hence, g ∈ lp,v and g ≥ 0. We have that

∞∑
n=1

 un
n+mw

n∑
j=1

gj

p

=

∞∑
k=1

kw∑
n=wk

 un
n+mw

n∑
j=1

gj

p

≥
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k=1

 1

kw +mw

wk∑
j=1

gj

p
kw∑

n=wk

upn
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≥ 1

wp

w∑
n=1

upn

∞∑
k=2

 1

k +m

(k−1)w∑
j=1

gj

p

=
1

wp

w∑
n=1

upn

∞∑
k=1

 1

k +m+ 1

kw∑
j=1

gj

p

=
1

wp

w∑
n=1

upn

∞∑
k=1

 1

k +m+ 1

k∑
i=1

iw∑
j=wi

gj

p

=
1

wp

w∑
n=1

upn

∞∑
k=1

 1

k +m+ 1

k∑
i=1

ϕi

iw∑
j=wi

v−p
′

j

p

=

w∑
j=1

v−p
′

j Tp

∞∑
k=1

(
1

k +m+ 1

k∑
i=1

ϕi

)
.(16)

Let C be the best constant in the inequality (8). Then, on the basis of (8),
(15), (16) and (3), we have

C = sup
f≥0

∞∑
n=1

(
un

n+mw

n∑
j=1

fj

)p
∞∑
i=1

(vifi)
p

≥ Tp sup
ϕ≥0

∞∑
k=1

(
1

k+m+1

k∑
i=1

ϕi

)p
∞∑
k=1

ϕpk

=

(
p

p− 1

)p
Tp.

Consequently,

(17) C ≥
(

p

p− 1

)p
Tp

for m ≥ 0, i.e., for m ≥ 1 and m = 0. Then for m ≥ 1 from (14) and (17) we
get (9), and for m = 0 we get (10). The proof of Theorem 2.1 is complete. �

Since the inequality (8) is equivalent to the inequality

(18)

∞∑
n=wm+1

un
n

n∑
k=wm+1

fk

p

≤ C
∞∑

i=wm+1

(vifi)
p, f = {fi}∞i=1 ∈ lp,v, f ≥ 0,

then from Theorem 2.1 we have the following corollary.

Corollary 2.2. Let 1 < p <∞ and uk ≥ 0, vk > 0, ∀k ≥ 1. Let the sequences

up = {upk}∞k=1 and v−p
′

= {v−p
′

k }∞k=1 belong to the class Pw. Then for any
integer number m ≥ 1 the inequality (18) holds with the best constant (9).
Moreover, in (18) the equality is reached only for the trivial sequence.

If the inequality (18) holds for m = 0 with the best constant C > 0, then
(10) holds.
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3. Oscillatory properties of a class of second order difference
equations

Here we consider an application of Theorem 2.1 to the problem of oscillation
and nonoscillation of the second order difference equation

(19) ∆(vi|∆yi|p−2∆yi) + λ
ui
ip
|yi+1|p−2yi+1 = 0, i ≥ 1,

with coefficients vi > 0, ui ≥ 0, i ≥ 1, where 1 < p <∞ and λ > 0.
Let us list notions and definitions required for the equation (19). Let m ≥ 1

be an integer number.
- If there exists a nontrivial solution y = {yi}∞i=1 of the equation (19) such

that ym 6= 0 and ymym+1 < 0 or ym = 0, then the solution y has a generalized
zero on the interval (m,m+ 1].

- A nontrivial solution y of the equation (19) is called oscillatory, if it has
infinite number of generalized zeros, otherwise it is called nonoscillatory.

- The equation (19) is called oscillatory if all its nontrivial solutions are
oscillatory, otherwise it is called nonoscillatory.

- For the equation (19) the Sturm theorem on the separation of zeroes is valid,
thus the equation (19) is oscillatory, if its one nontrivial solution is oscillatory.

- The equation (19) is called disconjugate on the interval [m,n], 1 ≤ m <
n <∞, if its any nontrivial solution has no more than one zero on (m,n+ 1],
otherwise it is called conjugate on [m,n].

- The equation (19) is called disconjugate on the interval [m,∞), if for any
n > m it is disconjugate on the interval [m,n].

Let y = {yi}∞i=1 be a sequence of real numbers. Let supp y := {i ≥ 1 : yi 6=
0} and 1 ≤ m < n ≤ ∞. Denote by

◦
Y (m,n) the set of all nontrivial sequences

of real numbers y = {yi}∞i=1 such that supp y ⊂ [m + 1, n], n < ∞. When
n =∞, we assume that for any y there exists an integer number k = k(y) and
supp y ⊂ [m+ 1, k].

The basic properties of the equation (19) are given in so–called “roundabout
theorem” [17, Theorem 1]. This Theorem gives the equivalence of some four
statements (i)–(iv) concerning solutions of the equation (19), and the equiva-
lence of the statements (i) and (iv) implies a criterion of disconjugality of the
equation (19) in the given discrete interval [m,n], 1 ≤ m < n ≤ ∞. In [9] it is
shown that this criterion is equivalent to the following Lemma.

Lemma 3.1. Let 1 ≤ m < n ≤ ∞. The equation (19) is disconjugate on the
interval [m,n] ([m,∞)) if and only if

(20) λ

n∑
i=m

ui−1

∣∣∣yi
i

∣∣∣p ≤ n∑
i=m

vi|∆yi|p

for all y ∈
◦
Y (m,n), where u0 = 0.



610 A. KALYBAY AND R. OINAROV

Consider the inequality

(21) λ

n∑
i=m

ui−1

∣∣∣yi
i

∣∣∣p ≤ C n∑
i=m

vi|∆yi|p, y ∈
◦
Y (m,n).

If (20) holds, then (21) holds with the best constant

(22) 0 < C ≤ 1.

Inversely, if (21) holds with the best constant (22), then (20) holds.
Let

(23)

∞∑
j=1

v1−p
′

j =∞.

Then, as shown in [1,9], the following Lemma holds.

Lemma 3.2. Let n =∞ and (23) hold. Then the inequality (21) is equivalent
to the Hardy inequality

(24) λ

∞∑
k=m

uk

(
1

k

k∑
i=m

fi

)p
≤ C

∞∑
k=m

vkf
p
k , fk ≥ 0,∀i ≥ m.

Moreover, the best constants in (21) and (24) coincide.

Condition A. Suppose that the coefficients of the equation (19) satisfy the

condition u ∈ Pw v1−p
′

= {v1−p
′

i } ∈ Pw.

Condition A gives that (23) holds. Therefore, on the basis of Lemma 3.2, the
equation (19) is disconjugate on the interval [m,∞) if and only if the equation
(24) holds with the best constant (22).

In (24) we replace the value m by the value wm+1, then (24) will have the
following form

(25) λ

∞∑
k=wm+1

u 1
p

k

k

k∑
i=wm+1

fi

p

≤ C
∞∑

k=wm+1

(
v

1
p

k fk

)p
, fk ≥ 0, ∀i ≥ m.

On the basis of Corollary 2.2, the best constant in (25) is the value

(26) C = λ

(
p

p− 1

)p
Mp,

where

Mp = Tp(u
1
p , v

1
p ) =

1

w

w∑
i=1

ui

 1

w

w∑
j=1

v1−p
′

j

p−1

.

Due to (26), the condition (22) is equivalent to the condition

(27) λ ≤
(
p− 1

p

)p
M−1p .
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Since the condition (27) does not depend on m ≥ 1, then on the basis of (22)
we have the following Theorem.

Theorem 3.3. Let 1 < p <∞ and Condition A hold. Then
(i) the equation (19) is nonoscillatory (disconjugate on the interval [1,∞))

if and only if (27) holds;
(ii) the equation (19) is oscillatory if and only if

λ >

(
p− 1

p

)p
M−1p

holds.

Two parts (i) and (ii) of Theorem 3.3 imply that the number
(
p−1
p

)p
M−1p

is the threshold value such that (19) is oscillatory for λ exceeding this number

and nonoscillatory otherwise. Thus, λ =
(
p−1
p

)p
M−1p is called the critical

oscillation constant for the equation (19). The critical oscillation constants play
an important role in the investigation of the oscillatory properties of equations.
However, it is not always possible to find such constants, so that they are still
undefined in many cases.

Remark 3.4. If the sequences u = {ui}∞i=1 and v = {vi}∞i=1 of the equation
(19) are w-periodic, then by Theorem 3.3 its critical oscillation constant is the
following

λ =

(
p− 1

p

)p(
1

w

w∑
i=1

ui

)−1 1

w

w∑
j=1

v1−p
′

j

1−p

,

and, in particular, for the linear case p = 2 it is the following

λ =
1

4

(
1

w

w∑
i=1

ui

)−1 1

w

w∑
j=1

v−1j

−1 .
In the works [7,8,18] the finding of these critical constants is noted as an open
question.

4. Weighted integral Hardy inequality with best constant

Let w > 0 be a real number. Here by Pw we denote the class of nonnegative
functions summable on (0, T ] for any T > 0 satisfying the following condition

(28)

∫ w

0

u(t)dt =

∫ kw

(k−1)w
u(t)dt, k = 1, 2, 3, . . . .

It is obvious that the nonnegative w-periodic function u belongs to the class
Pw. Indeed, for k ≥ 1 we have∫ kw

(k−1)w
u(t)dt =

∫ w

0

u(t+ (k − 1)w)dt =

∫ w

0

u(t)dt.
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Let m ≥ 0 and v be a function measurable on (0,∞). By Lp,v we denote
the space of all measurable on (0,∞) functions f , for which∫ ∞

mw

|v(t)f(t)|pdt <∞

holds. Define

Gp =

(
1

w

∫ w

0

up(t)dt

)(
1

w

∫ w

0

v−p
′
(s)ds

)p−1
.

Theorem 4.1. Let 1 < p < ∞ and u(t) ≥ 0, v(t) > 0, ∀t ≥ 0. Let functions

up and v−p
′

belong to the class Pw. Then for any integer number m ≥ 1 the
inequality

(29)

∫ ∞
mw

(
u(x)

x

∫ x

mw

f(t)dt

)p
dx ≤ C

∫ ∞
mw

(v(t)f(t))pdt, f ≥ 0, f ∈ Lp,v,

holds with the best constant

(30) C =

(
p

p− 1

)p
Gp.

Moreover, in (29) the equality is reached only for the trivial function.
If the inequality (29) holds for m = 0 with the best constant C > 0, then

(31) C ≥
(

p

p− 1

)p
Gp.

Remark 4.2. Theorem 4.1 was presented in [14] without proof in connection
with its application to the oscillatory properties of certain class of Sturm–
Liouville type quasilinear equations.

Proof. Let f 6≡ 0 be a nonnegative function from Lp,v. Let m ≥ 1. Using the
relations (28) and (3), we have∫ ∞

mw

(
u(x)

x

∫ x

mw

f(t)dt

)p
dx

=

∞∑
k=1

∫ (k+m)w

(k+m−1)w

(
u(x)

x

∫ x

mw

f(t)dt

)p
dx

≤
∞∑
k=1

(
1

(k +m− 1)w

∫ (k+m)w

mw

f(t)dt

)p ∫ (k+m)w

(k+m−1)w
up(x)dx

=
1

wp

∫ w

0

up(x)dx

∞∑
k=1

(
1

k +m− 1

k∑
i=1

∫ (i+m)w

(i+m−1)w
f(t)dt

)p

=
1

wp

∫ w

0

up(x)dx

∞∑
k=1

(
1

k +m− 1

k∑
i=1

Fi

)p
,(32)
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where

Fi =

∫ (i+m)w

(i+m−1)w
f(t)dt.

Due to (3), we get

(33)

∞∑
k=1

(
1

k +m− 1

k∑
i=1

Fi

)p
<

(
p

p− 1

)p ∞∑
i=1

F pi .

Since by Hölder’s inequality we have

∞∑
i=1

F pi =

∞∑
i=1

(∫ (i+m)w

(i+m−1)w
f(t)dt

)p

≤
∞∑
i=1

(∫ (i+m)w

(i+m−1)w
v−p

′
(t)dt

)p−1 ∫ (i+m)w

(i+m−1)w
|v(t)f(t)|pdt

=

(∫ w

0

v−p
′
(t)dt

)p−1 ∞∑
i=1

∫ (i+m)w

(i+m−1)w
|v(t)f(t)|pdt

=

(∫ w

0

v−p
′
(t)dt

)p−1 ∫ ∞
mw

|v(t)f(t)|pdt,

then from (32) and (33) we get∫ ∞
mw

(
u(x)

x

∫ x

mw

f(t)dt

)p
dx <

(
p

p− 1

)p
Gp

∫ ∞
mw

|v(t)f(t)|pdt.

Hence,

(34) C ≤
(

p

p− 1

)p
Gp,

where C is the best constant in (29).
Now we prove that the estimate (31) holds for m ≥ 0 and (34) implies (30)

for m ≥ 1.
Let m ≥ 0 and inequality (29) hold for all functions f ∈ Lp,v, f ≥ 0. We

introduce the function g: g(t) = v−p
′
(t)fk, k + m − 1 ≤ t < k + m, ∀k ≥ 1,

where f = {fk}∞k=1 is a sequence of real numbers such that fk ≥ 0, ∀k ≥ 1,

and 0 <
∞∑
k=1

fpk <∞.

Let us show that g ∈ Lp,v:∫ ∞
mw

(v(t)g(t))pdt =

∞∑
k=1

∫ (k+m)w

(k+m−1)w
(v(t)g(t))pdt

=

∞∑
k=1

fpk

∫ (k+m)w

(k+m−1)w
v−p

′
(t)dt
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=

∫ w

0

v−p
′
(t)dt

∞∑
k=1

fpk <∞.(35)

Therefore, for g the inequality (29) holds.
Moreover, we have∫ ∞

mw

(
u(x)

x

∫ x

mw

g(t)dt

)p
dx

=

∞∑
k=1

∫ (k+m)w

(k+m−1)w

(
u(x)

x

∫ x

mw

g(t)dt

)p
dx

≥
∞∑
k=2

(
1

(k +m)w

∫ (k+m−1)w

mw

g(t)dt

)p ∫ (k+m)w

(k+m−1)w
up(x)dx

=
1

wp

∫ w

0

up(x)dx

∞∑
k=1

(
1

k +m+ 1

∫ (k+m)w

mw

g(t)dt

)p

=
1

wp

∫ w

0

up(x)dx
∞∑
k=1

(
1

k +m+ 1

k∑
i=1

∫ (i+m)w

(i+m−1)w
g(t)dt

)p

=
1

wp

∫ w

0

up(x)dx

∞∑
k=1

(
1

k +m+ 1

k∑
i=1

fi

)p(∫ (i+m)w

(i+m−1)w
v−p

′
(t)dt

)p

=

∫ w

0

v−p
′
(t)dt Gp

∞∑
k=1

(
1

k +m+ 1

k∑
i=1

fi

)p
.(36)

Let C be the best constant in (29), then from (29), (35), (36) and (3) we
have

C = sup
f≥0

∫∞
mw

(
u(x)
x

∫ x
mw

f(t)dt
)p
dx∫∞

mw
(v(t)f(t))pdt

≥ Gp sup
f={fk}≥0

∞∑
k=1

(
1

k+m+1

k∑
i=1

fk

)p
∞∑
k=1

fpk

=

(
p

p− 1

)p
Gp.

Therefore, the estimate (31) holds. The proof of Theorem 4.1 is complete. �

Since under the conditions of Theorem 4.1 the inequality (29) is equivalent
to the inequality

(37)

∫ ∞
0

(
u(x)

x+mw

∫ x

0

f(t)dt

)p
dx ≤ C

∫ ∞
0

(v(t)f(t))pdt,

then from Theorem 4.1 we get the following corollary.



WEIGHTED HARDY INEQUALITIES WITH SHARP CONSTANTS 615

Corollary 4.3. Let 1 < p < ∞ and u(t) ≥ 0, v(t) > 0, ∀t ≥ 0. Let the

functions up and v−p
′

belong to the class Pw. Then for any integer number
m ≥ 1 the inequality (37) holds with the best constant (30). Moreover, in (37)
the equality is reached only for the trivial function.

If the inequality (37) holds for m = 0 with the best constant C > 0, then
(31) holds.
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