DOI QR코드

DOI QR Code

KMT-2018-BLG-0029LB: A VERY LOW MASS-RATIO Spitzer MICROLENS PLANET

  • Gould, Andrew (Max-Planck-Institute for Astronomy) ;
  • Ryu, Yoon-Hyun (Korea Astronomy and Space Science Institute) ;
  • Novati, Sebastiano Calchi (IPAC) ;
  • Zang, Weicheng (Physics Department and Tsinghua Centre for Astrophysics, Tsinghua University) ;
  • Albrow, Michael D. (University of Canterbury, Department of Physics and Astronomy) ;
  • Chung, Sun-Ju (Korea Astronomy and Space Science Institute) ;
  • Han, Cheongho (Department of Physics, Chungbuk National University) ;
  • Hwang, Kyu-Ha (Korea Astronomy and Space Science Institute) ;
  • Jung, Youn Kil (Korea Astronomy and Space Science Institute) ;
  • Shin, In-Gu (Korea Astronomy and Space Science Institute) ;
  • Shvartzvald, Yossi (IPAC) ;
  • Yee, Jennifer C. (Center for Astrophysics / Harvard & Smithsonian) ;
  • Cha, Sang-Mok (Korea Astronomy and Space Science Institute) ;
  • Kim, Dong-Jin (Korea Astronomy and Space Science Institute) ;
  • Kim, Hyoun-Woo (Korea Astronomy and Space Science Institute) ;
  • Kim, Seung-Lee (Korea Astronomy and Space Science Institute) ;
  • Lee, Chung-Uk (Korea Astronomy and Space Science Institute) ;
  • Lee, Dong-Joo (Korea Astronomy and Space Science Institute) ;
  • Lee, Yongseok (Korea Astronomy and Space Science Institute) ;
  • Park, Byeong-Gon (Korea Astronomy and Space Science Institute) ;
  • Pogge, Richard W. (Department of Astronomy Ohio State University) ;
  • Beichman, Charles (NASA Exoplanet Science Institute, California Institute of Technology) ;
  • Bryden, Geoff (IPAC) ;
  • Carey, Sean (Spitzer, Science Center) ;
  • Gaudi, B. Scott (Department of Astronomy Ohio State University) ;
  • Henderson, Calen B. (IPAC) ;
  • Zhu, Wei (Canadian Institute for Theoretical Astrophysics, University of Toronto) ;
  • Fouque, Pascal (CFHT Corporation) ;
  • Penny, Matthew T. (Department of Astronomy Ohio State University) ;
  • Petric, Andreea (CFHT Corporation) ;
  • Burdullis, Todd (CFHT Corporation) ;
  • Mao, Shude (Department of Astronomy and Tsinghua Centre for Astrophysics, Tsinghua University)
  • Received : 2019.06.27
  • Accepted : 2019.12.31
  • Published : 2020.02.29

Abstract

At q = 1.81 ± 0.20 × 10-5, KMT-2018-BLG-0029Lb has the lowest planet-host mass ratio q of any microlensing planet to date by more than a factor of two. Hence, it is the first planet that probes below the apparent "pile-up" at q = 5-10 ×10-5. The event was observed by Spitzer, yielding a microlens-parallax πE measurement. Combined with a measurement of the Einstein radius θE from finite-source effects during the caustic crossings, these measurements imply masses of the host Mhost = 1.14+0.10-0.12 M and planet Mplanet = 7.59+0.75-0.69 M, system distance DL = 3.38+0.22-0.26 kpc and projected separation a = 4.27+0.21-0.23 AU. The blended light, which is substantially brighter than the microlensed source, is plausibly due to the lens and could be observed at high resolution immediately.

Keywords

References

  1. Alard, C. & Lupton, R.H. 1998, A Method for Optimal Image Subtraction, ApJ, 503, 325 https://doi.org/10.1086/305984
  2. Albrow, M. D., Horne, K., Bramich, D. M., et al. 2009, Difference Imaging Photometry of Blended Gravitational Microlensing Events with a Numerical Kernel, MNRAS, 397, 2099 https://doi.org/10.1111/j.1365-2966.2009.15098.x
  3. Batista, V., Gould, A., Dieters, S., et al. 2011, MOA-2009-BLG-387Lb: A Massive Planet Orbiting an M Dwarf, A&A, 529, 102 https://doi.org/10.1051/0004-6361/201016111
  4. Batista, V., Beaulieu, J.-P., Gould, A., et al. 2014, MOA-2011-BLG-293Lb: First Microlensing Planet Possibly in the Habitable Zone, ApJ, 780, 54
  5. Batista, V., Beaulieu, J.-P., Bennett, D.P., et al. 2015, Confirmation of the OGLE-2005-BLG-169 Planet Signature and Its Characteristics with Lens-Source Proper Motion Detection, ApJ, 808, 170 https://doi.org/10.1088/0004-637X/808/2/170
  6. Bennett, D.P., Anderson, J., Bond, I.A., et al. 2006, Identification of the OGLE-2003-BLG-235/MOA-2003-BLG-53 Planetary Host Star, ApJ, 647, L171 https://doi.org/10.1086/507585
  7. Bennett, D.P., Rhie, S.H., Nikolaev, S. et al. 2010, Masses and Orbital Constraints for the OGLE-2006-BLG-109Lb,c Jupiter/Saturn Analog Planetary System, ApJ, 713, 837 https://doi.org/10.1088/0004-637X/713/2/837
  8. Bennett, D.P., Bhattacharya, A., Anderson, J., et al. 2015, Confirmation of the Planetary Microlensing Signal and Star and Planet Mass Determinations for Event OGLE-2005-BLG-169, ApJ, 808, 169 https://doi.org/10.1088/0004-637X/808/2/169
  9. Bensby, T. Yee, J.C., Feltzing, S., et al. 2013, Chemical Evolution of the Galactic Bulge as Traced by Microlensed Dwarf and Subgiant Stars. V. Evidence for a Wide Age Distribution and a Complex MDF, A&A, 549, A147 https://doi.org/10.1051/0004-6361/201220678
  10. Bessell, M.S., & Brett, J.M. 1988, JHKLM Photometry - Standard Systems, Passbands, and Intrinsic Colors, PASP, 100, 1134 https://doi.org/10.1086/132281
  11. Bhattacharya, A., Bennett, D.P., Anderson, J., et al. 2017, The Star Blended with the MOA-2008-BLG-310 Source Is Not the Exoplanet Host Star, AJ, 154, 59 https://doi.org/10.3847/1538-3881/aa7b80
  12. Bond, I.A., Udalski, A., Jaroszynski, M. et al. 2004, OGLE 2003-BLG-235 / MOA 2003-BLG-53: A Planetary Microlensing Event, ApJ, 606, L155 https://doi.org/10.1086/420928
  13. Bond, I.A., Bennett, D.P., Sumi, T. et al. 2017, The Lowest Mass Ratio Planetary Microlens: OGLE 2016-BLG-1195Lb, MNRAS, 469, 2434 https://doi.org/10.1093/mnras/stx1049
  14. Calchi Novati, S., Gould, A., Yee, J.C., et al. 2015, Spitzer IRAC Photometry for Time Series in Crowded Fields, ApJ, 814, 92 https://doi.org/10.1088/0004-637X/814/2/92
  15. Calchi Novati, S., Suzuki, D., Udalski, A., et al. 2019, Microlensing Parallax for OGLE-2016-BLG-1067: a sub-Jupiter Orbiting an M-dwarf in the Disk, AJ, 157, 121 https://doi.org/10.3847/1538-3881/ab0106
  16. Calchi Novati, S., Skowron, J., Jung, Y.K., et al. 2018, Spitzer Opens New Path to Break Classic Degeneracy for Jupitermass Microlensing Planet OGLE-2017-BLG-1140Lb, AJ, 155, 261 https://doi.org/10.3847/1538-3881/aac21c
  17. DePoy, D.L., Atwood, B., Belville, S.R., et al. 2003, A Novel Double Imaging Camera (ANDICAM), SPIE 4841, 827
  18. Dong, S., Udalski, A., Gould, A., et al. 2007, First Space-Based Microlens Parallax Measurement: Spitzer Observations of OGLE-2005-SMC-001, ApJ, 664, 862 https://doi.org/10.1086/518536
  19. Dong, S., Gould, A., Udalski, A., et al. 2009, OGLE-2005-BLG-071Lb, The Most Massive M Dwarf Planetary Companion?, ApJ, 695, 970 https://doi.org/10.1088/0004-637X/695/2/970
  20. Gaudi, B.S. 1998, Distinguishing Between Binary-Source and Planetary Microlensing Perturbations, ApJ, 506, 533 https://doi.org/10.1086/306256
  21. Gaudi, B.S., Bennett, D.P., Udalski, A. et al. 2008, Discovery of a Jupiter/Saturn Analog with Gravitational Microlensing, Science, 319, 927 https://doi.org/10.1126/science.1151947
  22. Gonzalez, O. A., Rejkuba, M., Zoccali, M., et al. 2012, Reddening and Metallicity Maps of the Milky Way Bulge from VVV and 2MASS, A&A, 543, A13 https://doi.org/10.1051/0004-6361/201219222
  23. Gould, A. 1992, Extending the MACHO Search to About 106 Solar Masses, ApJ, 392, 442 https://doi.org/10.1086/171443
  24. Gould, A. 1994, MACHO Parallaxes from a Single Satellite, ApJL, 421, L75 https://doi.org/10.1086/187191
  25. Gould, A. 2000, A Natural Formalism for Microlensing, ApJ, 542, 785 https://doi.org/10.1086/317037
  26. Gould, A. 2003, $\chi^{2}$ and Linear Fits, arXiv:astro-ph/0310577
  27. Gould, A. 2004, Resolution of the MACHO-LMC-5 Puzzle: The Jerk-Parallax Microlens Degeneracy, ApJL, 606, 319 https://doi.org/10.1086/382782
  28. Gould, A. 2019, Osculating Versus Intersecting Circles in Space-Based Microlens Parallax Degeneracies, JKAS, 52, 121
  29. Gould, A. & Yee, J.C. 2012, Cheap Space-based Microlens Parallaxes for High-magnification Events, ApJ, 755, L17 https://doi.org/10.1088/2041-8205/755/1/L17
  30. Gould, A., Udalski, A., Shin, I.-G. et al. 2014, A Terrestrial Planet in a -1-AU Orbit Around One Member of a -15-AU Binary, Science, 345, 46 https://doi.org/10.1126/science.1251527
  31. Gould, A., Carey, S., & Yee, J. 2013, Spitzer Microlens Planets and Parallaxes, 2013spitz.prop.10036
  32. Gould, A., Carey, S., & Yee, J. 2014, Galactic Distribution of Planets from Spitzer Microlens Parallaxes, 2014spitz.prop.11006
  33. Gould, A., Yee, J., & Carey, S., 2015a, Galactic Distribution of Planets From High-Magnification Microlensing Events, 2015spitz.prop.12013
  34. Gould, A., Yee, J., & Carey, S., 2015b, Degeneracy Breaking for K2 Microlens Parallaxes, 2015spitz.prop.12015
  35. Gould, A., Yee, J., & Carey, S., 2016, Galactic Distribution of Planets Spitzer Microlens Parallaxes, 2015spitz.prop.13005
  36. Gould, A., Miralda-Escude, J. & Bahcall, J.N. 1994, Microlensing Events: Thin Disk, Thick Disk, or Halo?, ApJ, 423, L105 https://doi.org/10.1086/187247
  37. Han, C., Udalski, A., Lee, C.-U., et al. 2016, Space-based Microlens Parallax Observation as a Way to Resolve the Severe Degeneracy between Microlens-parallax and Lensorbital Effects, ApJ, 827, 11 https://doi.org/10.3847/0004-637X/827/1/11
  38. Holtzman, J.A., Watson, A.M., Baum, W.A., et al. 1998, The Luminosity Function and Initial Mass Function in the Galactic Bulge, AJ, 115, 1946 https://doi.org/10.1086/300336
  39. Hwang, K.-H., Udalski, A., Shvartzvald, Y. et al. 2018, OGLE-2017-BLG-0173Lb: Low Mass-Ratio Planet in a "Hollywood" Microlensing Event, AJ, 155, 20
  40. Jiang, G., DePoy, D.L., Gal-Yam, A., et al. 2005, OGLE-2003-BLG-238: Microlensing Mass Estimate of an Isolated Star, ApJ, 617, 1307
  41. Jung, Y. K., Udalski, A., Gould, A., et al. 2018, OGLE-2017-BLG-1522: A Giant Planet around a Brown Dwarf Located in the Galactic Bulge, AJ, 155, 219 https://doi.org/10.3847/1538-3881/aabb51
  42. Jung, Y. K., Gould, A., Zang, W., et al. 2019a, KMT-2017-BLG-0165Lb: A Super-Neptune-mass Planet Orbiting a Sun-like Host Star, AJ, 157, 72 https://doi.org/10.3847/1538-3881/aaf87f
  43. Jung, Y. K., Gould, A., Udalski, A, et al. 2019b, Spitzer Parallax of OGLE-2018-BLG-0596: A Low-mass-ratio Planet around an M-dwarf, AJ, 158, 28 https://doi.org/10.3847/1538-3881/ab237f
  44. Kervella, P., Thevenin, F., Di Folco, E., & Segransan, D. 2004, The Angular Sizes of Dwarf Stars and Subgiants. Surface Brightness Relations Calibrated by Interferometry, A&A, 426, 297 https://doi.org/10.1051/0004-6361:20035930
  45. Kim, S.-L., Lee, C.-U., Park, B.-G., et al. 2016, KMTNET: A Network of 1.6 m Wide-Field Optical Telescopes Installed at Three Southern Observatories, JKAS, 49, 37
  46. Kim, D.-J., Kim, H.-W., Hwang, K.-H., et al., 2018a, Korea Microlensing Telescope Network Microlensing Events from 2015: Event-finding Algorithm, Vetting, and Photometry, AJ, 155, 76 https://doi.org/10.3847/1538-3881/aaa47b
  47. Kim, H.-W., Hwang, K.-H., Kim, D.-J., et al., 2018b, The KMTNet/K2-C9 (Kepler) Data Release, AJ, 155, 186 https://doi.org/10.3847/1538-3881/aab76c
  48. Kim, H.-W., Hwang, K.-H., Kim, D.-J., et al., 2018c, The KMTNet 2016 Data Release, arXiv:1804.03352
  49. Kim, H.-W., Hwang, K.-H., Shvartzvald, et al. 2018d, The Korea Microlensing Telescope Network (KMTNet) Alert Algorithm and Alert System, arXiv:1806.07545
  50. Koshimoto, N. & Bennett, D.P., 2019, Evidence of Systematic Errors in Spitzer Microlens Parallax Measurements, AJ, submitted, arXiv:1905.05794
  51. Muraki, Y., Han, C., Bennett, D.P., et al. 2011, Discovery and Mass Measurements of a Cold, 10 Earth Mass Planet and Its Host Star, ApJ, 741, 22 https://doi.org/10.1088/0004-637X/741/1/22
  52. Minniti, D., Lucas, P., VVV Team, 2017, VizieR Online Data Catalog: VISTA Variable in the Via Lactea Survey DR2 (Minniti+, 2017), yCAT 2348, 0
  53. Nataf, D.M., Gould, A., Fouque, P. et al. 2013, Reddening and Extinction Toward the Galactic Bulge from OGLE-III: The Inner Milky Way's Rv - 2:5 Extinction Curve, ApJ, 769, 88 https://doi.org/10.1088/0004-637X/769/2/88
  54. Paczynski, B. 1986, Gravitational Microlensing by the Galactic Halo, ApJ, 304, 1 https://doi.org/10.1086/164140
  55. Park B.-G., DePoy, D.L., Gaudi, B.S. et al. 2004, MOA 2003-BLG-37: A Bulge Jerk-Parallax Microlensing Degeneracy, ApJ, 609, 166 https://doi.org/10.1086/420926
  56. Refsdal, S. 1966, On the Possibility of Determining the Distances and Masses of Stars from the Gravitational Lens Effect, MNRAS, 134, 315 https://doi.org/10.1093/mnras/134.3.315
  57. Ryu, Y.-H., Yee, J.C., Udalski, A.,, et al. 2017b, OGLE-2016-BLG-1190Lb: First Spitzer Bulge Planet Lies Near the Planet/Brown-Dwarf Boundary, AJ, 155, 40 https://doi.org/10.3847/1538-3881/aa9be4
  58. Ryu, Y.-H., Udalski, A., Yee, J.C. et al. 2019, OGLE-2018-BLG-0532Lb: Cold Neptune With Possible Jovian Sibling, AAS submitted, arXiv:1905.08148
  59. Ryu, Y.-H., Navarro, M.G., Gould, A. et al. 2020, KMT-2018-BLG-1292: A Super-Jovian Microlens Planet in the Galactic Plane, AJ, 159, 58 https://doi.org/10.3847/1538-3881/ab5e7e
  60. Schechter, P.L., Mateo, M., & Saha, A. 1993, DOPHOT, a CCD Photometry Program: Description and Tests, PASP, 105, 1342 https://doi.org/10.1086/133316
  61. Shin, I.-G., Udalski, A., Yee, J.C., et al. 2018, OGLE-2016-BLG-1045: A Test of Cheap Space-based Microlens Parallaxes, ApJ, 863, 23 https://doi.org/10.3847/1538-4357/aacdf4
  62. Shvartzvald, Y., Yee, J.C., Calchi Novati, S. et al. 2017b, An Earth-mass Planet in a 1 au Orbit around an Ultracool Dwarf, ApJL, 840, L3 https://doi.org/10.3847/2041-8213/aa6d09
  63. Skowron, J., Udalski, A., Gould, A., et al. 2011, Binary Microlensing Event OGLE-2009-BLG-020 Gives Verifiable Mass, Distance, and Orbit Predictions, ApJ, 738, 87 https://doi.org/10.1088/0004-637X/738/1/87
  64. Smith, M., Mao, S., & Paczynski, B. 2003, Acceleration and Parallax Effects in Gravitational Microlensing, MNRAS, 339, 925 https://doi.org/10.1046/j.1365-8711.2003.06183.x
  65. Street, R., Udalski, A., Calchi Novati, S. et al. 2016, Spitzer Parallax of OGLE-2015-BLG-0966: A Cold Neptune in the Galactic Disk, ApJ, 829, 93 https://doi.org/10.3847/0004-637X/829/2/93
  66. Suzuki, D., Bennett, D.P., Sumi, T., et al. 2016, The Exoplanet Mass-ratio Function from the MOA-II Survey: Discovery of a Break and Likely Peak at a Neptune Mass, ApJ, 833, 145 https://doi.org/10.3847/1538-4357/833/2/145
  67. Tomaney, A.B., & Crotts, A.P.S. 1996, Expanding the Realm of Microlensing Surveys with Difference Image Photometry, AJ, 112, 2872 https://doi.org/10.1086/118228
  68. Udalski, A. 2003, The Optical Gravitational Lensing Experiment. Real Time Data Analysis Systems in the OGLE-III Survey, Acta Astron., 53, 291
  69. Udalski, A., Szymanski, M., Kaluzny, J., et al. 1994, The Optical Gravitational Lensing Experiment. The Early Warning System: Real Time Microlensing, Acta Astron., 44, 227 https://doi.org/10.1016/S0094-5765(99)00021-1
  70. Udalski, A., Yee, J.C., Gould, A., et al. 2015a, Spitzer as a Microlens Parallax Satellite: Mass Measurement for the OGLE-2014-BLG-0124L Planet and its Host Star, ApJ, 799, 237 https://doi.org/10.1088/0004-637X/799/2/237
  71. Udalski, A., Szymanski, M.K. & Szymanski, G. 2015b, OGLE-IV: Fourth Phase of the Optical Gravitational Lensing Experiment, Acta Astron., 65, 1 https://doi.org/10.1016/j.actaastro.2009.01.058
  72. Udalski, A., Ryu, Y.-H., Sajadian, S., et al. 2018, OGLE-2017-BLG-1434Lb: Eighth q < 1 $\times$$10^{-4}$ Mass-Ratio Microlens Planet Confirms Turnover in Planet Mass-Ratio Function, Acta Astron., 68, 1 https://doi.org/10.1016/j.actaastro.2010.08.007
  73. Wozniak, P. R. 2000, Difference Image Analysis of the OGLEII Bulge Data. I. The Method, Acta Astron., 50, 421
  74. Yee, J.C., Gould, A., Beichman, C., 2015, Criteria for Sample Selection to Maximize Planet Sensitivity and Yield from Space-Based Microlens Parallax Surveys, ApJ, 810, 155 https://doi.org/10.1088/0004-637X/810/2/155
  75. Yoo, J., DePoy, D.L., Gal-Yam, A. et al. 2004, OGLE-2003-BLG-262: Finite-Source Effects from a Point-Mass Lens, ApJ, 603, 139 https://doi.org/10.1086/381241
  76. Zhu, W., Udalski, A., Calchi Novati, S. et al. 2017, Toward a Galactic Distribution of Planets. I. Methodology and Planet Sensitivities of the 2015 High-cadence Spitzer Microlens Sample, AJ, 154, 210 https://doi.org/10.3847/1538-3881/aa8ef1